cho a+b =1 và ab khác 0. Chứng minh a/b^3-1 + b/a^3-1 =2(ab-2)/a^2.b^2+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta có:
VT = \(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{a}{\left(b-1\right)\left(b^2+b+1\right)}+\frac{b}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\frac{a}{-a\left(b^2+b+1\right)}+\frac{b}{-b\left(a^2+a+1\right)}=\frac{-1}{b^2+b+1}-\frac{1}{a^2+a+1}\)
\(=\frac{-a^2-a-1-b^2-b-1}{\left(b^2+b+1\right)\left(a^2+a+1\right)}=\frac{-a^2-b^2-3}{a^2b^2+ab^2+b^2+a^2b+ab+b+a^2+a+1}\)
\(=\frac{-\left[\left(a+b\right)^2-2ab\right]-3}{a^2b^2+ab\left(a+b\right)+\left(a+b\right)^2+ab-2ab+\left(a+b\right)+1}\)
\(=\frac{-\left[1-2ab\right]-3}{a^2b^2+ab+1-ab+1+1}\)
\(=\frac{2\left(ab-2\right)}{a^2b^2+3}=VP\)
Vậy nên VT = VP hay \(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2\left(ab-2\right)}{a^2b^2+3}\) (dpcm)
\(a+b=1\)\(\Rightarrow\hept{\begin{cases}a-1=-b\\b-1=-a\end{cases}}\)
Ta có: \(\frac{a}{b^3-1}-\frac{b}{a^3-1}=\frac{a}{\left(b-1\right)^3+3b\left(b-1\right)}-\frac{b}{\left(a-1\right)^3+3a\left(a-1\right)}\)
\(=\frac{a}{-a^3-3ab}-\frac{b}{-b^3-3ab}=\frac{a}{-a\left(a^2+3b\right)}-\frac{b}{-b\left(b^2+3a\right)}\)
\(=\frac{-1}{a^2+3b}-\frac{-1}{b^2+3a}=\frac{-1}{a^2+3b}+\frac{1}{b^2+3a}=\frac{-\left(b^2+3a\right)+a^2+3b}{\left(a^2+3b\right)\left(b^2+3a\right)}\)
\(=\frac{-b^2-3a+a^2+3b}{a^2b^2+3a^3+3b^3+9ab}=\frac{-\left(b^2-a^2\right)+\left(3b-3a\right)}{a^2b^2+3\left(a^3+b^3\right)+9ab}\)
\(=\frac{-\left(b-a\right)\left(b+a\right)+3\left(b-a\right)}{a^2b^2+3\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]+9ab}=\frac{-\left(b-a\right)+3\left(b-a\right)}{a^2b^2+3\left[1-3ab\right]+9ab}\)
\(=\frac{2\left(b-a\right)}{a^2b^2+3-9ab+9ab}=\frac{2\left(b-a\right)}{a^2b^2+3}\left(đpcm\right)\)
Ta có:
\(\dfrac{a^2-ab+b^2}{a^2+ab+b^2}=\dfrac{\dfrac{1}{3}\left(a^2+ab+b^2\right)+\dfrac{2}{3}\left(a-b\right)^2}{a^2+ab+b^2}\)
\(=\dfrac{1}{3}+\dfrac{2\left(a-b\right)^2}{3\left(a^2+ab+b^2\right)}\ge\dfrac{1}{3}\)
Dấu = xảy ra khi \(a=b\)