Cho tam giác ABC vuông tại A, đường cao AH
a/CMR:AH2=HB.HC
b/SAHB=4cm2, SAHC=9cm2.Tính BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
b: BC=4+9=13cm
AH=căn 4*9=6cm
S ABC=1/2*6*13=39cm2
A B C H 2 3
Sửa đề là : SCHA nhé
Ta có : \(\frac{S_{ABH}}{S_{CHA}}=\left(\frac{AB}{CH}\right)^2=\frac{4}{9}\)
a, Xét tam giác HAC và tam giác ABC
^C _ chung
^AHC = ^BAC = 900
Vậy tam giác HAC ~ tam giác ABC (g.g)
=> HC/AC=AC/BC ( cạnh tương ứng tỉ lệ )
=> AC^2 = HC . BC
b, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=20cm\)
Ta có AC^2 = HC . BC (cmt)
Thay vào ta được \(16^2=HC.20\Rightarrow HC=\dfrac{16^2}{20}=\dfrac{64}{5}cm\)
a. xét tam giác vuông HAC và tam giác vuông ABC, có:
góc C: chung
Vậy tam giác vuông HAC đồng dạng tam giác vuông ABC
b. Áp dụng định lí pitago vào tam giác vuông ABC
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{12^2+16^2}=\sqrt{400}=20cm\)
ta có: tam giác HAC đồng dạng tam giác ABC
\(\Rightarrow\dfrac{HC}{AC}=\dfrac{AC}{BC}\)
\(\Leftrightarrow HC.BC=AC^2\)
\(\Leftrightarrow20HC=16^2\)
\(\Leftrightarrow20HC=256\)
\(\Leftrightarrow HC=\dfrac{64}{5}cm\)
Hình bạn tự vẽ ạ
a, Xét \(\Delta ABC\) và \(\Delta HAC\) có :
\(\widehat{A}=\widehat{AHC}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta ABC\sim\Delta HAC\left(g-g\right)\)
Ta có : ΔABC vuông A, định lý Pi-ta-go ta đươc :
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
Mà \(\Delta ABC\sim\Delta HAC\left(cmt\right)\)
\(\Rightarrow\dfrac{AB}{AH}=\dfrac{BC}{AC}\)
hay \(\dfrac{3}{AH}=\dfrac{5}{4}\)
\(\Rightarrow AH=\dfrac{3.4}{5}=2,4\left(cm\right)\)
b, \(S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{3.4}{2}=6\left(cm^2\right)\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó:ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7.2\left(cm\right)\)
c: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
Do đó; BD=60/7(cm); CD=80/7(cm)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}CH=\dfrac{AH^2}{BH}=\dfrac{36}{4,5}=8\left(cm\right)\\AB=\sqrt{4,5\left(4,5+8\right)}=\sqrt{4,5\cdot12,5}=7,5\left(cm\right)\\AC=\sqrt{8\cdot12,5}=10\left(cm\right)\end{matrix}\right.\)
và \(BC=12,5\left(cm\right)\)
\(b,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{AB^2}{BH}=\dfrac{36}{3}=12\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{BC^2-AB^2}{12}=\dfrac{6\sqrt{3}}{12}=\dfrac{\sqrt{3}}{2}\left(cm\right)\\AH=3\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)
cm \(\Delta ABH\approx\Delta CAH\left(g.g\right)\)
\(\Rightarrow\frac{AH}{CH}=\frac{BH}{HA}\Leftrightarrow AH^2=HB.HC\left(đpcm\right)\)
\(\frac{S_{ABH}}{S_{CAH}}=\frac{\frac{AH.BH}{2}}{\frac{AH.HC}{2}}=\frac{BH}{HC}=\frac{4}{9}\)
ko bít có cho đoạn thẳng nào ko ko cho ko làm đc đâu