cm 3/4+8/9+15/10+........+9999/100000 < 99
nhờ các bạn giải nhanh hộ mình nhé ^-^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk giải đc câu 1 thôi còn câu 2 thì mk ko hiểu bn thông cảm nhé.
1.
dãy trên có số số hạng là :
( 9999 - 1010 ) : 101 + 1 = 90 (số)
tổng của dãy là :
( 9999 + 1010 ) x 90 : 2 = 495405
đáp số : 495405
Câu 1 bạn kia làm đúng rồi nên mình chỉ làm câu 2 thôi nhé.
Ta có :
13 . 15 - 12.15 - 15.1
= 15. ( 13 - 12 - 1)
= 15.0
= 0
Mà số nào nhân với 0 cũng bằng 0 suy ra tích trên bằng 0
\(\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{8}\right)\times\left(1+\frac{1}{15}\right)\times...\times\left(1+\frac{1}{9999}\right)\)
\(=\frac{2^2}{1\cdot3}\times\frac{3^2}{2\cdot4}\times\frac{4^2}{3\cdot5}\times...\times\frac{100^2}{99\cdot101}\)
\(=\frac{2\cdot3\cdot4\cdot...\cdot100}{1\cdot2\cdot3\cdot...\cdot99}\times\frac{2\cdot3\cdot4\cdot...\cdot100}{3\cdot4\cdot5\cdot...\cdot101}\)
\(=\frac{100}{1}\times\frac{2}{101}=\frac{200}{101}.\)
tính nhanh:
181+3-4-5+6+7-8-9+10+11-12-13+14+15-16-17+18+19
các bạn giải đầy đủ ra giúp mình với nhé!
=181+(3-4-5+6)+(7-8-9+10)+(11-12-13+14)+(15-16-17+18)+19
=181+0+0+0+0+19
=181+19
=200
Đặt :
\(A=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+................+\dfrac{9999}{10000}\)
\(A=\dfrac{1.3}{2^2}+\dfrac{2.4}{3^2}+\dfrac{3.5}{4^2}+....................+\dfrac{99.101}{100^2}\)
\(A=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+..................+\dfrac{100^2-1}{100^2}\)
\(A=\dfrac{2^2}{2^2}-\dfrac{1}{2^2}+\dfrac{3^3}{3^2}-\dfrac{1}{3^2}+............+\dfrac{100^2}{100^2}-\dfrac{1}{100^2}\)
\(A=\left(\dfrac{2^2}{2^2}+\dfrac{3^3}{3^3}+...........+\dfrac{100^2}{100^2}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^3}+........+\dfrac{1}{100^2}\right)\)
\(A=\left(1+1+........+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^3}+............+\dfrac{1}{100^2}\right)\)
\(A=99-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+..........+\dfrac{1}{100^2}\right)\)
Ta có :
\(\dfrac{1}{2^2}+\dfrac{1}{3^3}+............+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...........+\dfrac{1}{99.100}\)\(\dfrac{1}{2^2}+........+\dfrac{1}{100^2}< \dfrac{1}{1}-\dfrac{1}{2}+.......+\dfrac{1}{99}-\dfrac{1}{100}\)\(\Rightarrow\dfrac{1}{2^2}+.........+\dfrac{1}{100^2}< 1-\dfrac{1}{100}\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+.........+\dfrac{1}{100^2}< \dfrac{100}{101}\)
\(\Rightarrow99-\left(\dfrac{1}{2^2}+...........+\dfrac{1}{100^2}\right)< 99-\dfrac{100}{101}\)
\(\Rightarrow A< 99-\dfrac{100}{101}\)
\(\Rightarrow a< 99\rightarrowđpcm\)
~ Học tốt ~