Chứng tỏ rằng:
\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\)là số chia hết cho 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=75.\left(4^{2004}+4^{2003}+......+4^2+1\right)+25\)
Đặt :
\(B=4^{2004}+4^{2003}+.......+4^2+4+1\)
\(\Leftrightarrow4B=4^{2005}+4^{2004}+........+4^2+4\)
\(\Leftrightarrow4B-B=\left(4^{2005}+4^{2004}+......+4^2+4\right)-\left(4^{2004}+4^{2003}+.....+4+1\right)\)
\(\Leftrightarrow3B=4^{2005}-1\)
\(\Leftrightarrow B=\dfrac{4^{2005}-1}{3}\)
\(\Leftrightarrow A=75.\dfrac{4^{2005}-1}{3}+25\)
\(\Leftrightarrow A=25.\left(4^{2004}-1+1\right)\)
\(\Leftrightarrow A=25.4.4^{2003}\)
\(\Leftrightarrow A=100.4^{2003}⋮100\left(đpcm\right)\)
A=4+4^1+4^2+..........+4^2004
A.3=4^2007-4
\(A=\frac{\left(4^{2007}-4\right)}{3}\)
Chắc đặt nhầm lớp rồi
Ta có :\(B=4^{2004}+4^{2003}+...+4^2+4+1\)
\(4B=\left(4^{2004}+4^{2003}+...+4^2+4+1\right).4\)
\(4B=4^{2005}+4^{2004}+...+4^3+4^2+4\)
\(4B-B=\left(4^{2005}+4^{2004}+...+4^3+4^2+4\right)\)\(-\left(4^{2004}+4^{2003}+...+4+1\right)\)
\(3B=\left(4^{2005}-1\right)\)\(\Rightarrow\frac{4^{2005}-1}{3}\)
\(\Rightarrow A=75.\frac{4^{2005}-1}{3}+25\)
\(\Rightarrow A=25.\left(4^{2005}-1\right)+25\)
\(\Rightarrow A=25.\left(4^{2005}-1+1\right)\)
\(\Rightarrow A=25.4.4^{2004}\)
\(\Rightarrow A=100.4^{2004}\)
Mà 100 chia hết 100 nên \(100.4^{2004}\) chia hết cho 100
B=4^0 + 4^1 +...+ 4^2004
4B=4^1+4^2+...+4^2005
3B=4^2004-4^0
B=(4^2004-4^0):3
Thay B vào ta có :
A=75.(4^2004-4^0):3+25
A=25.(4^2004-4^0)+25
A=25.4^2004
A=100.4^2003
Vậy A chia hết cho 100