cmr:a^2+b^2 chia hết cho 3 thìa và b chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
a) Ta thấy cứ 2 số tự nhiên liên tiếp chắc chắn có một số chia hết cho 2 nên tích của chúng phải chia hết cho 2
b) Đặt tích 3 số tự nhiên liên tiếp là T = a * (a + 1) * (a + 2)
-Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp
+Nếu a chia hết cho 2 (a chẵn) => T chia hết cho 2
+Nếu a chia 2 dư 1 (a lẻ) => a + 1 chia hết cho 2 => T chia hết cho 2
-Chứng minh T chia hết cho 3: Có 3 trường hợp
+Nếu a chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 1 => a + 2 chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 2 => a + 1 chia hết cho 3 => T chia hết cho 3
2 và 3 nguyên tố cùng nhau
=> T chia hết cho 2.3 = 6
Lời giải:
a.
$A=2+2^2+2^3+...+2^{100}$
$2A=2^2+2^3+2^4+...+2^{101}$
$\Rightarrow 2A-A=2^{101}-2$
$\Rightarrow A=2^{101}-2$
b.
Hiển nhiên các số hạng của $A$ đều chẵn nên $A\vdots 2(1)$
Mặt khác:
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{97}+2^{98}+2^{99}+2^{100})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{97}(1+2+2^2+2^3)$
$=(1+2+2^2+2^3)(2+2^5+...+2^{97})=15(2+2^5+...+2^{97})\vdots 15(2)$
Từ $(1); (2)$ mà $(2,15)=1$ nên $A\vdots (2.15)$ hay $A\vdots 30$
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{98}+2^{99}+2^{100})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{98}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+...+2^{98})$
$=2+7(2^2+2^5+...+2^{98})$
$\Rightarrow A$ không chia hết cho 7
$\Rightarrow A$ không chia hết cho 14.
1) B = 33 + 34 + 35 + ... + 361 + 362 ( có 60 số, 60 chia hết cho 3)
B = (3^3 + 3^4 + 3^5) + (3^6 + 3^7 + 3^8) + ... + (3^60 + 3^61 + 3^62)
B = 3^3.(1 + 3 + 3^2) + 3^6.(1 + 3 + 3^2) + ... + 3^60.(1 + 3 + 3^2)
B = 3^3.13 + 3^6.13 + ... + 3^60.13
B = 13.(3^3 + 3^6 + ... + 3^60) chia hết cho 13
=> số dư khi chia B cho 13 là 0
2) Do 4a + 3b chia hết cho 7
=> 2.(4a + 3b) chia hết cho 7
=> 8a + 6b chia hết cho 7
=> 7a + a + 7b - b chia hết cho 7
Do 7a + 7b chia hết cho 7 => a - b chia hết cho 7
Ủng hộ mk nha ☆_☆★_★^_-
B = 33 + 34 + 35 + ... + 361 + 362 ( có 60 số, 60 chia hết cho 3)
B = (3^3 + 3^4 + 3^5) + (3^6 + 3^7 + 3^8) + ... + (3^60 + 3^61 + 3^62)
B = 3^3.(1 + 3 + 3^2) + 3^6.(1 + 3 + 3^2) + ... + 3^60.(1 + 3 + 3^2)
B = 3^3.13 + 3^6.13 + ... + 3^60.13
B = 13.(3^3 + 3^6 + ... + 3^60) chia hết cho 13
=> số dư khi chia B cho 13 là 0
2) Do 4a + 3b chia hết cho 7
=> 2.(4a + 3b) chia hết cho 7
=> 8a + 6b chia hết cho 7
=> 7a + a + 7b - b chia hết cho 7
Do 7a + 7b chia hết cho 7 => a - b chia hết cho 7
a) Ta có : A = \(x^3-x\)
=> A = \(x^2.x-x\)
=> A = \(x\left(x^2-1\right)\)
Xét :
TH1 : \(x\) là số chẵn => \(x\)chia hết cho \(2\) => \(x\left(x^2-1\right)\)chia hết cho \(2\) ( thỏa mãn )
TH2 : \(x\)là số lẻ => \(x^2\)là số lẻ => \(x^2-1\)là số chẵn, chia hết cho 2 => \(x\left(x^2-1\right)\)chia hết cho \(2\)(thỏa mãn )
Qua 2 TH ta đều thấy \(x^3-x\)chia hết cho \(2\)
Vậy A chia hết cho 2.
Nhớ k nha Mai best friend !
Vì số chính phương chia 3 dư 1 hoặc 0
Do đó các cặp số dư khi chia lần lượt a2 và b2 cho 3 là
(0;0) (0;1) (1;0) (1;1)
Vì a2+b2chia hết 3 nên ta nhận cặp (0;0) => a,b đều chia hết 3