cho △ABC có AB=6cm, BC=9cm.vẽ đường cao AH, đường phân giác BD(HϵBC, DϵAC) gọi E là giao điểm của AH và BD, biết BH=4cm
a. chứng minh △HBA đồng dạng △ABC
b. tính độ dài các đoạn thẳng AC, AH
c. tính tỉ số AE/EH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tg vuông BAC và tg vuông BHA có
\(\widehat{ACB}=\widehat{BAH}\) (cùng phụ với \(\widehat{ABC}\) )
=> tg BAC đồng dạng với tg BHA (g.g.g)
b/ Xét tg vuông BAC có
\(BC=\sqrt{AB^2+AC^2}\) (Pitago) \(\Rightarrow BC=\sqrt{6^2+8^2}=10cm\)
\(AB^2=HB.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\)
\(\Rightarrow HC=BC-HB=10-3,6=6,4cm\)
\(AH^2=HB.HC\) (Trong tg vuông bình phương đường cạo hạ từ đỉnh góc vuông bằng tích giữa hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AH^2=3,6.6,4=23,04\Rightarrow AH=4,8cm\)
c/
Xét tg vuông HBM và tg vuông ABD có
\(\widehat{HBM}=\widehat{ABD}\left(gt\right)\) => tg HBM đồng dạng với tg ABD (g.g.g)
\(\Rightarrow\dfrac{HB}{AB}=\dfrac{HM}{AD}\Rightarrow\dfrac{AD}{AB}=\dfrac{HM}{HB}\) (1)
Xét tg vuông ABC có BD là phân giác \(\widehat{B}\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{CD}{BC}\) (T/c đường phân giác: Trong tg đường phân giác của 1 góc chia cạnh đối diện thành hai đợn thẳng tỷ lệ với hai cạnh kề hai đoạn thẳng đó) (2)
Xét tg ABH có BM là phân giác \(\widehat{B}\)
\(\Rightarrow\dfrac{HM}{HB}=\dfrac{AM}{AB}\) (T/c đường phân giác: Trong tg đường phân giác của 1 góc chia cạnh đối diện thành hai đợn thẳng tỷ lệ với hai cạnh kề hai đoạn thẳng đó) (3)
Từ (1) (2) (3) \(\Rightarrow\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{HM}{HB}=\dfrac{AM}{AB}\)
\(\Rightarrow\dfrac{AD}{AB}.\dfrac{AM}{AB}=\dfrac{CD}{BC}.\dfrac{HM}{HB}\)
Mà \(HB.BC=AB^2\) (cmt)
\(\Rightarrow\dfrac{AD.AM}{AB^2}=\dfrac{HM.CD}{AB^2}\Rightarrow AM.AD=HM.CD\)
\(\Rightarrow AM.AD-HM.CD=0\)
(Tự vẽ hình)
a) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2=9^2+12^2=225\Rightarrow BC=15\left(cm\right)\)
Xét \(\Delta AHB\) và \(\Delta CAB\) có:
\(\widehat{AHB}=\widehat{CAB}=90^0\);
\(\widehat{B}\) chung
\(\Rightarrow\Delta AHB\sim\Delta CAB\) (g.g)
b) Do \(\Delta AHB\sim\Delta CAB\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)
c) Xét \(\Delta BAD\) và \(\Delta BHK\) có:
\(\widehat{BAD}=\widehat{BHK}=90^0\)
\(\widehat{ABD}=\widehat{HBK}\) (tính chất phân giác)
\(\Rightarrow\Delta BAD\sim\Delta BHK\left(g.g\right)\Rightarrow\dfrac{BA}{BD}=\dfrac{BH}{BK}\Rightarrow BA.BK=BH.BD\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: BC=10cm; AH=4,8cm
b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC∼ΔHBA(g-g)
Suy ra: \(\dfrac{S_{ABC}}{S_{HBA}}=\left(\dfrac{BC}{BA}\right)^2=\left(\dfrac{10}{6}\right)^2=\left(\dfrac{5}{3}\right)^2=\dfrac{25}{9}\)
c) Xét ΔABC có BM là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{MA}{AB}=\dfrac{MC}{BC}\)(Tính chất tia phân giác)
hay \(\dfrac{MA}{6}=\dfrac{MC}{10}\)
mà MA+MC=AC=8cm(M nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{MA}{6}=\dfrac{MC}{10}=\dfrac{MA+MC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}MA=3\left(cm\right)\\MC=5\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABM vuông tại A, ta được:
\(BM^2=AB^2+AM^2\)
\(\Leftrightarrow BM^2=6^2+3^2=36+9=45\)
hay \(BM=3\sqrt{5}\left(cm\right)\)
Vậy: AM=3cm; \(BM=3\sqrt{5}\left(cm\right)\)
3:
a: AE/AD=9/6=3/2
AD/AC=6/12=1/2
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng vơi ΔABC
c: IB/IC=AB/AC=AD/AE
=>IB*AE=IC*AD