K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

ta có \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)

...

tương tự và cộng lại \(=>M>\frac{a+b+c+d}{a+b+c+d}=1\)(1)

Lại có \(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

\(\frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)

...

tương tự và cộng lại \(=>M< \frac{a+b+b+c+c+d+d+a}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)(2)

Từ 1 và 2 = > 1<m<2 ( đpcm)

6 tháng 5 2021

nhìn vậy mà bảo chị à  D:

nghĩa là tiếp tục làm giống như vậy rồi cộng theo từng vế á

7 tháng 2 2020

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

9 tháng 8 2016

Ta có a, b, c, d thuộc  N*
\(\Leftrightarrow\)\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{b+c+d}>\frac{c}{a+b+c+d} \)

\(\frac{d}{a+c+d}>\frac{d}{a+b+c+d}\)

Cộng vế theo vế, ta có: M>\(\frac{a+b+c+d}{a+b+c+d}\)=1
Vì a, b, c, d thuộcc N* \(\Rightarrow\) \(\frac{a}{a+b+c}< 1 \)\(\Rightarrow\)  \(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Tương tự, ta có: \(\frac{b}{a+b+d}< \frac{b+c}{a+b+c+d},\frac{c}{b+c+d}< \frac{c+a}{a+b+c+d},\frac{d}{a+c+d}< \frac{d+b}{a+b+c+d}\)

9 tháng 8 2016

Tiếp nha bạn:
Công vế theo vế ta có:
M<\(\frac{a+d+b+c+c+a+d+b}{a+b+c+d} \Rightarrow M< \frac{2a+2b+2c+2d}{a+b+c+d}\)\(\Rightarrow M< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

\(\Rightarrow\) M<2               (2)
 Từ (1) và (2) \(\Rightarrow\)  1<M<2
                      \(\Rightarrow\)   M không có giá trị là số nguyên

8 tháng 6 2016

Vì a,b,c,d,m,n thuộc Z   và  a < b < c < d < m < n nên ta có : 

                          a + b < 2a ( 1 )

                         c + d < 2c   (2)

                         m + n < 2m ( 3)

Cộng vế với vế các bđt (1), (2) và (3) ta được :  a + b + c + d + m + n > 2 ( a + c  + m )

                                                                                 => \(\frac{1}{a+b+c+d+m+n}< \frac{1}{2\left(a+c+m\right)}\)

                                                                                =>\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{a+c+m}{2.\left(a+c+m\right)}=\frac{1}{2}\)   ( đpcm ) 

8 tháng 6 2016

xin lỗi mình đánh nhầm dấu ">" thành "<"  mình xin đính chính lại nhé : a + c > 2a (1 )

                                                                                                                               c + d > 2c  (2)

                                                                                                                             m + n > 2m ( 3)

có chút sai xót chỗ này thành thật xin lỗi !