K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2015

1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6

Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60

n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)

n chia hết cho 7 => 60k + 1 chia hết cho 7

<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)

<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)

Vậy k nhỏ nhất là 5

Thế vào (*): n = 301 thỏa mãn

2. a) n = 25k - 1 chia hết cho 9

<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)

<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)

Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4

Thế vào trên được n = 99 thỏa mãn

b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21

Vậy không có n thỏa mãn

c) Đặt n = 9k

9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)

<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)

9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)

Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)

<=> a + 1 ≡ 0 (mod 4) (*)

Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn

Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D

13 tháng 10 2015

1. n = 301

2.a) n = 99

b) không có

c) n = 774

26 tháng 3 2024
Dudijdiddidijdjdjdjdj
26 tháng 3 2024

1: a chia 3 dư 2 nên a=3k+2

4a+1=4(3k+2)+1

=12k+8+1

=12k+9=3(4k+3) chia hết cho 3

2:

a: 36 chia hết cho 3x+1

=>\(3x+1\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)

mà x là số tự nhiên

nên 3x+1 thuộc {1;4}

=>x thuộc {0;1}

b: 2x+9 chia hết cho x+2

=>2x+4+5 chia hết cho x+2

=>5 chia hết cho x+2

=>x+2 thuộc {1;-1;5;-5}

=>x thuộc {-1;-3;3;-7}

mà x thuộc N

nên x=3

6 tháng 1 2017

B1:960,970,980

B2:chia hết cho 4 và 9

16 tháng 8 2017

bài 1

A=(960;970;980)

24 tháng 10 2023

Bài 3

126 ⋮ x và 210 ⋮ x

⇒ x ∈ ƯC(126; 210)

Ta có:

126 = 2.3².7

210 = 2.3.5.7

⇒ ƯCLN(126; 210) = 2.3.7 = 42

⇒ ƯC(126; 210) = Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}

Mà 15 < x < 30

⇒ x = 21

24 tháng 10 2023

Bài 4

a) 320 ⋮ a; 480 ⋮ a và a là số lớn nhất

⇒ a = ƯCLN(320; 480)

Ta có:

320 = 2⁶.5

480 = 2⁵.3.5

⇒ a = ƯCLN(320; 480) = 2⁵.5 = 160

b) 360 ⋮ a; 600 ⋮ a và a là số lớn nhất

⇒ a = ƯCLN(360; 600)

Ta có:

360 = 2³.3².5

600 = 2³.3.5²

⇒ a = ƯCLN(360; 600) = 2³.3.5 = 120

18 tháng 10 2021

a) Ta có: a chia 9 dư 4 => đặt a =9k+4

           b chia 9 dư 5 => đặt b=9t+5

=> a+b = 9k+4+9t+5 = 9(k+t+1) chia hết cho 9

b) Ta có: c chia 9 dư 8 => đặt c=9n+8

=> b+c = 9t+5+9n+8 = 9(t+n+1) +4

=> b+c chia 9 dư 4

18 tháng 10 2021

Câu a: vì tổng của 2 số dư của a+b=9 nên t có : a+b chia hết cho 9 và 4+5 chia hết cho 9 nên suy ra a+b chia hết cho 9                                                b: dư4

31 tháng 1 2022

a) Ta có: a chia 9 dư 4 => đặt a =9n+4

           b chia 9 dư 5 => đặt b=9h+5

=> a+b = 9n+4+9h+5 = 9(n+h+1) chia hết cho 9

b) Ta có: c chia 9 dư 8 => đặt c=9m+8

=> b+c = 9h+5+9m+8 = 9(h+m+1) +4

=> b+c chia 9 dư 4