K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017

Kết quả là -5.2

17 tháng 10 2023

\(\left|3x+5\right|=x+1\)

TH1: \(3x+5=x+1\left(x\ge-\dfrac{5}{3}\right)\)

\(\Rightarrow3x-x=1-5\)

\(\Rightarrow2x=-4\)

\(\Rightarrow x=-2\left(ktm\right)\)

TH2: \(3x-5=-\left(x+1\right)\left(x< -\dfrac{5}{3}\right)\)

\(\Rightarrow3x-5=-x-1\)

\(\Rightarrow3x+x=-1+5\)

\(\Rightarrow4x=4\)

\(\Rightarrow x=1\)

Vậy không có x thõa mãn

_______

\(\left|2x-3\right|=2x-3\)

\(\Rightarrow2x-3=2x-3\left(x\ge\dfrac{3}{2}\right)\)

\(\Rightarrow0=0\) (luôn đúng)

Nên mọi x đề thỏa mãn khi \(x\ge\dfrac{3}{2}\)

Vậy: ... 

17 tháng 10 2023

|3x + 5| = x + 1

TH1: x ≥log ) -5/3

(1) ⇒ 3x + 5 = x + 1

3x - x = 1 - 5

2x = -4

x = -2 (loại)

*) TH2: x < -5/3

(1) ⇒ 3x + 5 = -x - 1

3x + x = -1 - 5

4x = -6

x = -3/2 (loại)

Vậy không tìm được x thỏa mãn yêu cầu

--------

|2x - 3| = 2x - 3 (2)

*) TH1: x 3/2

(2) ⇒ 2x - 3 = 2x - 3

0x = 0 (luôn đúng với mọi x ≥ 3/2)

*) TH2: x < 3/2

(2) ⇒ 2x - 3 = 3 - 2x

2x + 2x = 3 + 3

4x = 6

x = 3/2 (loại)

Vậy x ≥  3/2

16 tháng 11 2021

\(a,\Leftrightarrow\left(5x+1\right)\left(x-4\right)-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(5x+1-x\right)=0\\ \Leftrightarrow5x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x^2-10x-2x^2-3x=26\\ \Leftrightarrow-13x=26\\ \Leftrightarrow x=-2\\ c,\Leftrightarrow x^3+1-x^3+3x=15\\ \Leftrightarrow3x=14\\ \Leftrightarrow x=\dfrac{14}{3}\)

\(d,\Leftrightarrow x^3-5x+2x^2-10+5x-2x^2-17=0\\ \Leftrightarrow x^3-27=0\\ \Leftrightarrow x^3=27\\ \Leftrightarrow x=3\)

25 tháng 7

a; \(\dfrac{2}{3}\)\(x\) - \(\dfrac{3}{2}\)\(x\) = \(\dfrac{5}{12}\)

    (\(\dfrac{2}{3}\) - \(\dfrac{3}{2}\))\(x\) = \(\dfrac{5}{12}\)

     - \(\dfrac{5}{6}\)\(x\) = \(\dfrac{5}{12}\)

     \(x\)   = \(\dfrac{5}{12}\) : (- \(\dfrac{5}{6}\))

     \(x=\) - \(\dfrac{1}{2}\)

Vậy \(x=-\dfrac{1}{2}\) 

    

25 tháng 7

b; \(\dfrac{2}{5}\) + \(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\)

           \(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\) - \(\dfrac{2}{5}\)

          \(\dfrac{3}{5}\).(3\(x\) - 3,7) = - \(\dfrac{57}{10}\)

         3\(x\) - 3,7 = - \(\dfrac{57}{10}\) : \(\dfrac{3}{5}\)

         3\(x\)   - 3,7 = - \(\dfrac{19}{2}\)

         3\(x\)         = - \(\dfrac{19}{2}\) + 3,7

          3\(x\)        = - \(\dfrac{29}{5}\)

           \(x\)         = - \(\dfrac{29}{5}\) : 3

           \(x\)        = - \(\dfrac{29}{15}\)

Vậy \(x\) \(\in\) - \(\dfrac{29}{15}\) 

            

6 tháng 4 2020

bạn đã kiểm tra kĩ chưa vậy?mình đọc đề câu B mà loạn não luôn á;-;

7 tháng 4 2020

mik kiểm tra rùi

19 tháng 8 2020

a) 4( 18 - 5x ) - 12( 3x - 16 ) = 15( 2x - 16 ) - 6( x + 14 )

<=> 72 - 20x - 36x + 192 = 30x - 240 - 6x - 84

<=> -20x - 36x - 30x + 6x = -240 - 84 - 72 - 192

<=> -80x = -588

<=> x = -588/-80 = 147/20

b) ( x + 3 )( x + 2 ) - ( x - 2 )( x + 5 ) = 6

<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 6

<=> x2 + 5x + 6 - x2 - 3x + 10 = 6

<=> 2x + 16 = 6

<=> 2x = -10

<=> x = -5

c) -x( x + 3 ) + 2 = ( 4x + 1 )( x - 1 ) + 2x

<=> -x2 - 3x + 2 = 4x2 - 3x - 1 + 2x

<=> -x2 - 3x - 4x2 + 3x - 2x = -1 - 2

<=> -5x2 - 2x = -3

<=> -5x2 - 2x + 3 = 0

<=> -( 5x2 + 2x - 3 ) = 0

<=> -( 5x2 + 5x - 3x - 3 ) = 0

<=> -[ 5x( x + 1 ) - 3( x + 1 ) ] = 0

<=> -( x + 1 )( 5x - 3 ) = 0

<=> \(\orbr{\begin{cases}x+1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{3}{5}\end{cases}}\)

d) ( 2x + 3 )( x - 3 ) - ( x - 3 )( x + 1 ) = ( 2 - x )( 3x + 1 ) + 3 

<=> 2x2 - 3x - 9 - ( x2 - 2x - 3 ) = -3x2 + 5x + 2 + 3

<=> 2x2 - 3x - 9 - x2 + 2x + 3 = -3x2 + 5x + 2 + 3

<=> 2x2 - 3x - x2 + 2x + 3x2 - 5x = 2 + 3 + 9 - 3

<=> 4x2 - 6x = 11

<=> 4x2 - 6x - 11 = 0

=> Vô nghiệm ( Lớp 8 chưa học nghiệm vô tỉ nên để vậy ) :))

19 tháng 8 2020

vẫn làm được nha quỳnh !

\(4x^2-6x-11=0\)

\(< =>\left(4x^2-6x+\frac{9}{4}\right)-13\frac{1}{4}=0\)

\(< =>\left(2x-\frac{3}{2}\right)^2=\frac{53}{4}\)

\(< =>\orbr{\begin{cases}2x-\frac{3}{2}=\frac{\sqrt{53}}{2}\\2x-\frac{3}{2}=-\frac{\sqrt{53}}{2}\end{cases}}\)

\(< =>\orbr{\begin{cases}2x=\frac{3+\sqrt{53}}{2}\\2x=\frac{3-\sqrt{53}}{2}\end{cases}}\)

\(< =>\orbr{\begin{cases}x=\frac{3+\sqrt{53}}{4}\\x=\frac{3-\sqrt{53}}{4}\end{cases}}\)