K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2023

A = ( \(\dfrac{1}{2}\) + 1)(\(\dfrac{1}{3}\) + 1).(\(\dfrac{1}{4}\) + 1)....(\(\dfrac{1}{999}\) + 1)

A = \(\dfrac{3}{2}\).\(\dfrac{4}{3}\).\(\dfrac{5}{4}\).......\(\dfrac{1000}{999}\)

A = \(\dfrac{3.4.5......999}{3.4.5......999}\)\(\dfrac{1000}{2}\)

A = 1 \(\times\) 500

A = 500

5 tháng 4 2017

\(\dfrac{1}{1}.\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+...+\dfrac{1}{999}.\dfrac{1}{1000}\\ =\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\\ =1-\dfrac{1}{1000}=\dfrac{999}{1000}\)

5 tháng 4 2017

ta có

1/1.1/2=1-1/2

1/2.1/3=1/2-1/3

1/3.1/4=1/3-1/4

............

1/999.1/1000=1/999-1/1000

Từ đó suy ra

1/1.1/2+1/2-1/3+1/3+.......+1/998.1/999+1/999.1/1000

=1/1-1/2+1/2-1/3+1/3-.....+1/998-1/999+1/999-1/1000

=1-1/1000

=1000/1000-1/1000

=999/1000

nhớ like bạn nhéhihi

\(B=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{101}{200}\)

 

Ta có: D\(=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2005}\right)\)

\(\Leftrightarrow D=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2004}{2005}=\dfrac{1.2.3...2004}{2.3.4...2005}=\dfrac{1}{2005}\)

Ta có: \(E=\dfrac{1^2}{1.3}.\dfrac{2^2}{2.4}.\dfrac{3^2}{3.5}...\dfrac{999^2}{999.1000}.\dfrac{1000^2}{1000.1001}=\dfrac{\left(1.2.3.4...1000\right)\left(1.2.3.4...1000\right)}{\left(1.2.3....1000\right)\left(3.4.5....1001\right)}=\dfrac{2}{1001}\)

24 tháng 4 2021

bn lm sai rồi

3 tháng 8 2023

\(...=\dfrac{3}{2}x\dfrac{4}{3}x\dfrac{5}{4}x\dfrac{6}{5}x\dfrac{7}{6}....x\dfrac{1000}{999}\)

\(=\dfrac{1}{2}x\dfrac{1000}{1}=500\)

3 tháng 8 2023

=3/2x4/3x5/4x....x1000/999

=1/2x1000=500

mình chưa chắc là đúng đâu nhé

 

5 tháng 4 2017

Bài toán này giống của lớp 7 ghê

5 tháng 4 2017

lớp 6 đó

5 tháng 4 2017

1001

23 tháng 7 2021

Q=...
có thấy đa thức Q ghi j đâu

6 tháng 10 2018

a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)

b, Ta có :

\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)

c, Ta có :

\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)

6 tháng 10 2018

Mình làm rồi đó !!!!!Trần Thị Hương Lan

31 tháng 5 2021

Ta có \(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}=\dfrac{1}{6}-\dfrac{1}{6}=0\) nên Q = 0.