Cho ▲ABC, M ϵ BC.
a, So sánh MA với AB+BM
b, MA+MC<BA+BC
c, Cho điểm D nằm trên cạnh AM. C/m DA+DC<MA+MC, từ đó suy ra DA+DC<BA+BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBMC ta có: MB + MC > BC (bất đẳng thức tam giác)
b)
*Xét ΔABM ta có: AM + BM > AB (1)
*Xét ΔACM ta có: AM + CM > AC (2)
*Xét ΔBMC ta có: BM + CM > BC (3)
Từ (1); (2); (3)
=> AM + BM + AM + CM + BM + CM > AB + AC + BC
=> 2. AM + 2. BM + 2. CM > AB + AC + BC
=> 2. (AM + BM + CM) > AB + AC + BC
Hay: 2. (MA + MB + MC) > AB + BC + CA
c)Gọi I là giao điểm của BM và AC.
Áp dụng bất đẳng thức tam giác vào ΔIMC ta có: MC<MI+IC (1)
Cộng MB vào hai vế (1) ta được: MC+MB<MI+IC+MB
⇒MC+MB<MI+MB+IC
⇒MC+MB<IB+IC (2)
d)Áp dụng bất đẳng thức tam giác vào ΔIBA ta có: IB<IA+AB (3)
Cộng IC vào hai vế (3) ta được: IB+IC<IA+AB+IC
⇒ IB+IC<IA+IC+AB
⇒IB+IC<AC+AB (4)
e)Từ (2) và (4) suy ra MB+MC<AB+AC
f)Áp dụng bđt tam giác, ta có:
AB+AI > BI = MB+MI, CI + MI > MC
=> AB + AI + CI + MI > MB + MI + MC
Mà AI + CI = AC
=> AB + AC > MB + MC [1]
Áp dụng bđt tam giác, ta cũng có:
BA + BC > MA + MC [2],
CA + CB > MA + MB [3]
Từ [1][2][3] => 2 (AB+AC+CA) > MA + MB + MC
=> MA + MB + MC < AB + AC + BC (đpcm)
a) Xét ΔBMC ta có: MB + MC > BC (bất đẳng thức tam giác)
b)
*Xét ΔABM ta có: AM + BM > AB (1)
*Xét ΔACM ta có: AM + CM > AC (2)
*Xét ΔBMC ta có: BM + CM > BC (3)
Từ (1); (2); (3)
=> AM + BM + AM + CM + BM + CM > AB + AC + BC
=> 2. AM + 2. BM + 2. CM > AB + AC + BC
=> 2. (AM + BM + CM) > AB + AC + BC
Hay: 2. (MA + MB + MC) > AB + BC + CA
c)Gọi I là giao điểm của BM và AC.
Áp dụng bất đẳng thức tam giác vào ΔIMC ta có: MC<MI+IC (1)
Cộng MB vào hai vế (1) ta được: MC+MB<MI+IC+MB
⇒MC+MB<MI+MB+IC
⇒MC+MB<IB+IC (2)
d)Áp dụng bất đẳng thức tam giác vào ΔIBA ta có: IB<IA+AB (3)
Cộng IC vào hai vế (3) ta được: IB+IC<IA+AB+IC
⇒ IB+IC<IA+IC+AB
⇒IB+IC<AC+AB (4)
e)Từ (2) và (4) suy ra MB+MC<AB+AC
f)Áp dụng bđt tam giác, ta có:
AB+AI > BI = MB+MI, CI + MI > MC
=> AB + AI + CI + MI > MB + MI + MC
Mà AI + CI = AC
=> AB + AC > MB + MC [1]
Áp dụng bđt tam giác, ta cũng có:
BA + BC > MA + MC [2],
CA + CB > MA + MB [3]
Từ [1][2][3] => 2 (AB+AC+CA) > MA + MB + MC
=> MA + MB + MC < AB + AC + BC (đpcm)
a) Cmr:
vì h là hình thang cân nên:
\(\hept{\begin{cases}\widehat{A}=\widehat{B}\\\widehat{C}=\widehat{D}\end{cases}=60^o}\)
=> MDBE là đồng vị
My#AC
=> \(\overline{C}=\overline{MAB}\)(đồng vị)
m : C = 60 độ
=>MEB = 60o
mà B có 60 o
Nên cmr rằng các tứ giác MDAF, MDBE và MECF là những hình thang cân.
b) \(\widehat{MEB}vs\widehat{BEC}\)(bù nhau)
Nên: NEB + DME = 80 o => DME =320 o
Vậy DMF > DME < EMF
c,d chịu :(
Bạn kia là gì mà mình chả hiểu, hình như nhầm đề nhỉ?
1/ *Chứng minh tứ giác MDAF cân:
Do MD // BC nên ^ABC = ^MDA = 60o(1). Mặt khác ^BAC = 60o nên ^DAC = 60o (2)
Từ (1) và (2) suy ra ^MDA = ^DAC (*)
Mà MF // AB -> MF //AD (**)
Từ (*) và (**) suy ra đpcm.
Các hình còn lại tương tự.
2/ Còn lại chịu.
a: Xét ΔMAB co MA<AB+BM
b: MA<AB+BM
=>MA+MC<AB+BM+MC
=>MA+MC<AB+BC
cảm ơn bn nhé