cho đường thẳng \(d:\begin{cases} x=2+t\\ y=3-2t \end{cases} \) .viết pt tổng quát của đường thẳng d.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(\Delta\) đi qua A và vuông góc với d nên \(\Delta\) phải nằm trong mặt phẳng (P) đi qua A và vuông góc với d.
Mặt phẳng (P) nhận vecto \(\overrightarrow{u}=\left(2;-1;4\right)\) của d làm vecto pháp tuyến, đi qua A(-4;-2;4) có phương trình : \(2x-y+4z-10=0\)
Gọi M là giao điểm của d và (P) thì M(-3+2t;1-t;-1+4t) thuộc d và M thuộc \(\Delta\)
Ta cũng có : \(M\in\left(P\right)\Leftrightarrow2\left(-3+2t\right)-\left(1-t\right)+4\left(-1+4t\right)-10=0\) \(\Leftrightarrow21t-21=0\Leftrightarrow t=1\)Vậy \(M\left(-1;0;3\right)\)Khi đó \(\overrightarrow{MA}=\left(3;2;-1\right)\), đường thẳng \(\Delta\)đi qua A và M có phương trình :\(\frac{x+4}{3}=\frac{y+2}{2}=\frac{z-4}{-1}\)\(B\in d\)=> B ( 7-2m; -3 +m)
\(B'\in d'\)=> B' ( -5 + 4t ; -7 + 3t )
Mà A; B;B' \(\in\)\(\Delta\) và AB = AB'
=> \(\overrightarrow{AB}=\overrightarrow{B'A}\)
=> \(\hept{\begin{cases}7-2m-2=2+5-4t\\-3+m+3=-3+7-3t\end{cases}}\)<=> m = 1; t = 1
=> B(5 ; -2); C( -1; - 4)
=> Viết phương trình d :....
Bài 1:
ĐKXĐ:.............
Phương trình hoành độ giao điểm của \((d)\cap (C)\):
\(2(x-m)-\frac{2x-m}{mx+1}=0\Leftrightarrow m(2x^2-2mx-1)=0\)
Nếu \(m=0\Rightarrow (d)\equiv C\) (vô lý) nên $m\neq 0$ . Do đó \(2x^2-2mx-1=0\). $(1)$
Hai điểm $A,B$ có hoành độ chính là nghiệm của phương trình $(1)$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=m\\ x_1x_2=\frac{-1}{2}\end{matrix}\right.\)
\(d(O,AB)=\frac{|-2m|}{\sqrt{5}}\); \(AB=\sqrt{(x_1-x_)^2+(y_1-y_2)^2}=\sqrt{5(m^2+2)}\)
\(\Rightarrow S_{OAB}=\frac{d(O,AB).AB}{2}=|m|\sqrt{m^2+2}\)
Mặt khác, dễ dàng tính được \(M(m,0),N(0,-2m)\) nên \(S_{OMN}=\frac{OM.ON}{2}=\frac{|m||-2m|}{2}=m^2\)
Ta có \(S_{OAB}=3S_{OMN}\Leftrightarrow |m|\sqrt{m^2+2}=3m^2\)
\(\Rightarrow m=\pm \frac{1}{2}(m\neq 0)\)
Bài 2:
Ta có \(A(1,0,1)\in (d_1);B(3,5,4)\in (d_2); \overrightarrow{u_{d_1}}=(-1,1,1);\overrightarrow{u_{d_2}}=(4,-2,1)\)
Dễ thấy \([\overrightarrow{u_{d_1}},\overrightarrow{u_{d_2}}]\overrightarrow{AB}\neq 0\) nên suy ra $(d_1)$ và $(d_2)$ chéo nhau
Gọi \(\overrightarrow{n_P}\) là vector pháp tuyến của mặt phẳng $(P)$
Khi đó \(\overrightarrow{n_P}=[\overrightarrow{u_{d_1}},\overrightarrow{u_{d_2}}]=(3,5,-2)\)
Vì $(P)$ đi qua $(d_1)$ nên $(P)$ đi qua $A$. Do đó PTMP là:
\(3(x-1)+5y-2(z-1)=0\Leftrightarrow 3x+5y-2z-1=0\)
Điểm M(2; 3) ∈ d
Vectơ chỉ phương của d: vecto u = (1; -2)
⇒ Vectơ pháp tuyến của d: vecto n = (2; 1)
Phương trình tổng quát của d:
d: 2(x - 2) + (y - 3) = 0
⇔ 2x - 4 + y - 3 = 0
⇔ 2x + y - 7 = 0
\(d\) có \(VTCP\overrightarrow{u}=\left(1;-2\right)\Rightarrow VTPT\overrightarrow{n}=\left(2;1\right)\)
qua \(A\left(2;3\right)\)
\(PTTQ\) của d dạng \(a\left(x-x_o\right)+b\left(y-y_o\right)=0\)
\(\Leftrightarrow2\left(x-2\right)+1\left(y-3\right)=0\)
\(\Leftrightarrow2x-4+y-3=0\)
\(\Leftrightarrow2x+y-7=0\)