Cau5: Cho tgiac ABC có AB = 4,8 cm; CA=6,4 cm. Trên cạnh AB và AC theo thứ tự lấy AM = 3,2 cm và AN = 2,4 cm. a) Hai tam giác AMN và ABC có đồng dạng hay không ? Vì sao? b) Qua M kẻ MP//AC. Chứng minh BMN=MPC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N K
2 tam giác AMK và tg BMK có
AM=BM; có chung đường cao từ K->AB nên
\(S_{AMK}=S_{BMK}=\dfrac{1}{2}S_{BKA}=\dfrac{1}{2}x50=25cm^2\)
2 tam giác ABN và tam giác CBN có chung đường cao từ B->AC nên
\(\dfrac{S_{ABN}}{S_{CBN}}=\dfrac{AN}{NC}=\dfrac{1}{2}\)
Hai tg ABN và tg CBN có chung BN nên
\(\dfrac{S_{ABN}}{S_{CBN}}=\) đường cao từ A->BN / đường cao từ C->BN \(=\dfrac{1}{2}\)
Hai tg BKA và tg BKC có chung BK nên
\(\dfrac{S_{BKA}}{S_{BKC}}=\) đường cao từ A->BN / đường cao từ C->BN \(=\dfrac{1}{2}\)
\(\Rightarrow S_{BKC}=2xS_{BKA}=2x50=100cm^2\)
\(\Rightarrow S_{BMC}=S_{BMK}+S_{BKC}=25+100=125cm^2\)
Hai tg BMC và tg AMC có chung đường cao từ C->AB nên
\(\dfrac{S_{BMC}}{S_{AMC}}=\dfrac{BM}{AM}=1\Rightarrow S_{BMC}=S_{AMC}=125cm^2\)
\(\Rightarrow S_{ABC}=S_{BMC}+S_{AMC}=125+125=250cm^2\)
Trường hợp 1: AC=2cm
=>Loại vì AB+AC<BC
Trường hợp 2: AC=5cm
=>Nhận và ΔABC cân tại C
a:Xét ΔCAB có AB<BC
nên \(\widehat{ACB}< \widehat{BAC}\)
b: C=AB+BC+AC=5+5+2=12(cm)
a: AM/AC=3,2/6,4=1/2
AN/AB=1/2
=>AM/AC=AN/AB
=>ΔAMN đồng dạng với ΔACB
b: MP//NC
=>góc MPC+góc C=180 độ
=>góc BMN=góc MPC