K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2023

Xét tam giác BFC vuông tại F và tam giác BEC vuông tại E có :

BC chung

FC = BE

=> Tam giác BFC= Tam giác BEC(ch-cgv)

=> Góc C= Góc B( 2 góc tương ứng) (1)

Xét tam giác CFA vuông tại F và tam giác ADC vuông tại D ta có :

CF = AD

AC chung

=>  Tam giác CFA= Tam giác ADC(ch-cgv)

=>  Góc C= Góc A( 2 góc tương ứng) (2)

Từ (1) và (2) suy ra Góc C= Góc A= Góc B  

Vậy Tam Giacs ABC là tam giác đều

 

 

 

21 tháng 9 2023

Tham khảo:

Xét tam giác BFC và tam giác BEC có :

BC chung

FC = BE

\(\widehat {BFC} = \widehat {BEC} = {90^o}\)

 ( cạnh huyền – cạnh góc vuông)

\( \Rightarrow \widehat C = \widehat B\) ( 2 góc tương ứng ) (1)

Xét tam giác CFA và tam giác ADC ta có :

CF = AD

AC chung

\(\widehat {ADC} = \widehat {AFC} = {90^o}\)

(cạnh huyền – cạnh góc vuông)

\( \Rightarrow \widehat C = \widehat A\)(2 góc tương ứng ) (2)

Từ (1) và (2) \( \Rightarrow \widehat C = \widehat A = \widehat B\) \( \Rightarrow \)Tam giác ABC là tam giác đều do có 3 góc bằng nhau 

1: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF và AE/AB=AF/AC

2: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

=>ΔAEF đồng dạng vơi ΔABC

3: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

=>HF/HE=HB/HC

=>HF/HB=HE/HC

Xét ΔHFE và ΔHBC có

HF/HB=HE/HC

góc FHE=góc BHC

=>ΔFHE đồng dạng với ΔBHC

Xét ΔAFC vuông tại F và ΔAEB vuông tại E có

CF=BE

góc ACF=gócABE

=>ΔAFC=ΔAEB

=>AC=AB

Xét ΔCEB vuông tại E và ΔCDA vuông tại D có

EB=DA

góc C chung

=>ΔCEB=ΔCDA

=>CB=CA=AB

=>ΔABC đều

18 tháng 5 2018

có cần rườm rà thế ko bn? mk chỉnh đề nhé

cho ΔABC cân tại A. trung truyến BM,CN cắt nhau tại I. CMR AI là p/g ∠BAC

vì BM và CN là 2 trung truyến của 1 Δ và cắt nhau tại I

=> I là trọng tâm ΔABC => AI là trung tuyến mà ΔABC cân tại A nên AI là p/g ∠BAC

23 tháng 5 2018

Nhưng bạn cứ trả lời câu hỏi của mình đi!