Tính nhanh
\(\frac{3}{4}+\frac{1}{3}+\frac{1}{4}+\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\)
\(A=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{5050}\)
\(A=2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)
\(A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{101}\right)\)
Tự tính
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{5050}\)
\(=2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{10100}\right)\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=2.\frac{99}{202}\)
\(=\frac{99}{101}\)
\(\left(2+\frac{1}{315}\right).\frac{1}{651}-\frac{1}{105}\left(3+1-\frac{1}{651}\right)-\frac{4}{315.651}+\frac{4}{105}\)
\(=\frac{2}{651}+\frac{1}{315.651}-\frac{4}{105}+\frac{1}{105.651}-\frac{4}{315.651}+\frac{4}{105}\)
\(=\frac{2}{651}-\frac{3}{315.651}+\frac{1}{105.651}\)
\(=\frac{2}{651}-\frac{1}{105.651}+\frac{1}{105.651}=\frac{2}{651}\)
\(B=\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(B=\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)+\left(\frac{-3}{4}-\frac{2}{9}-\frac{1}{36}+\frac{1}{72}\right)\)
\(B=\left(\frac{5}{15}+\frac{9}{15}+\frac{1}{15}\right)+\left(\frac{-54}{72}-\frac{16}{72}-\frac{2}{72}+\frac{1}{72}\right)\)
\(B=1-\frac{71}{72}\)
\(B=\frac{72}{72}-\frac{71}{72}\)
\(B=\frac{1}{72}\)
vay \(B=\frac{1}{72}\)
a) \(\frac{-2}{5}+\frac{3}{10}+\frac{-3}{5}\)
\(=\left[\left(-\frac{2}{5}\right)+\left(-\frac{3}{5}\right)\right]+\frac{3}{10}\)
\(=\left(-1\right)+\frac{3}{10}\)
\(=-\frac{7}{10}.\)
c) \(15\frac{1}{4}:\frac{5}{7}-25\frac{1}{4}:\frac{5}{7}\)
\(=\frac{61}{4}:\frac{5}{7}-\frac{101}{4}:\frac{5}{7}\)
\(=\left(\frac{61}{4}-\frac{101}{4}\right):\frac{5}{7}\)
\(=\left(-10\right):\frac{5}{7}\)
\(=-14.\)
Chúc bạn học tốt!
A= 1/3- 3/4+ 3/5+ 1/72- 2/9- 1/36+ 1/15
A= ( 1/3- 3/5+ 1/15) - (3/4- 1/72+ 2/9+ 1/36)
A= (5/15- 9/15+ 1/15) - (54/72- 1/72+ 16/72+ 2/36)
A= 1- 71/72
A= 1/72
Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)
\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
\(A=\frac{B}{6}=\frac{100}{2}=50\)
Vậy \(A=50\)
\(a,\frac{-7}{25}.\frac{11}{13}+\frac{-7}{25}.\frac{2}{13}-\frac{18}{25}\)
\(=\frac{-7}{25}.\left(\frac{11}{13}+\frac{2}{13}\right)-\frac{18}{25}=\frac{-7}{25}-\frac{18}{25}=-1\)
\(b,\frac{5}{7}.\frac{1}{3}-\frac{5}{7}.\frac{1}{4}-\frac{5}{7}.\frac{1}{12}=\frac{5}{7}.\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)=\frac{5}{7}.\left(\frac{4}{12}-\frac{3}{12}-\frac{1}{12}\right)\)
\(=\frac{5}{7}.0=0\)
c)\(5\frac{2}{5}.4\frac{2}{7}+5\frac{5}{7}.5\frac{2}{5}=\frac{27}{5}.\frac{30}{7}+\frac{40}{7}.\frac{27}{5}=\frac{27}{5}.\left(\frac{30}{7}+\frac{40}{7}\right)\)
\(=\frac{27}{5}.10=27.2=54\)
\(d,75\%-1\frac{1}{2}+0,5:\frac{5}{12}-\left(\frac{-1}{2}\right)^2=\frac{3}{4}-\frac{3}{2}+\frac{1}{2}.\frac{12}{5}-\frac{1}{4}\)
\(=\left(\frac{3}{4}-\frac{1}{4}\right)-\frac{3}{2}+\frac{6}{5}=\frac{1}{2}-\frac{3}{2}+\frac{6}{5}=-1+\frac{6}{5}=\frac{-5}{5}+\frac{6}{5}=\frac{1}{5}\)
\(=\frac{9}{12}+\frac{4}{12}+\frac{3}{12}+\frac{6}{12}=\frac{22}{12}=\frac{11}{6}..\)
Dễ thôi.
= (3/4 + 1/4) + (1/3 + 1/2)
= 4/4 + 5/6
= 44/24
( rút gọn: 44/24 = 11/6 [nếu cần])