Cho tam giác AEC đồng dạng với tam giác ABD như hình vẽ, tính BD:
BD bằng:
A. 10 cm
B. 2 cm
C. 4 cm
D. 2,5 cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AB^2+AC^2=3^2+4^2=25\)
\(BC^2=5^2=25\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A với BC là cạnh huyền
\(\Rightarrow\) Bán kính đường tròn ngoại tiếp tam giác ABC bằng 1 nửa BC
\(R=\dfrac{5}{2}=2,5\left(cm\right)\)
Xét ΔABC có \(\dfrac{AC}{sinB}=2R\)
=>\(2R=\dfrac{6}{sin150}=12\)
=>R=6(cm)
=>Chọn C
Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AI vuông góc với BC. Độ dài cạnh AI là:
A. 3√3 cm
B. 3 cm
C. 3√2 cm
D. 6√3 cm
Theo bất đẳng thức tam giác:
a) Vì 2 + 3 = 5 nên bộ ba đoạn thẳng có độ dài 2 cm, 3 cm, 5 cm không thể là độ dài ba cạnh của một tam giác
b) Vì 3+4 > 6 nên bộ ba đoạn thẳng có độ dài 3 cm, 4 cm, 6 cm có thể là độ dài ba cạnh của một tam giác
* Cách vẽ: + Vẽ độ dài cạnh AB = 6cm.
+ Dùng compa, vẽ cung tròn tâm A bán kính 3 cm, cung tròn tâm B bán kính 4cm. Hai cung tròn này cắt nhau tại C.
Ta được tam giác ABC cần vẽ.
c) Vì 2+4 > 5 nên bộ ba đoạn thẳng có độ dài 2 cm, 4 cm, 5 cm có thể là độ dài ba cạnh của một tam giác
* Cách vẽ: + Vẽ độ dài cạnh AB = 5cm.
+ Dùng compa, vẽ cung tròn tâm A bán kính 2 cm, cung tròn tâm B bán kính 4cm. Hai cung tròn này cắt nhau tại C.
Ta được tam giác ABC cần vẽ.
A.10cm
Do \(\Delta ACE\sim\Delta ABD\) nên ta có:
\(\dfrac{AE}{EB}=\dfrac{EC}{BD}\) hay \(\dfrac{4}{6}=\dfrac{5}{BD}\)
\(\Rightarrow BD=\dfrac{2.5}{4}=2,5cm\)
Vậy BD có độ dài là 2,5cm ⇒ Chọn D