Cho hình chóp S.ABC có ABC là tam giác vuông tại A và SB vuông góc với mặt phẳng (ABC).
Gọi BH là đường cao của tam giác SAB. Trong các khẳng định sau, khẳng định nào là khẳng
định sai?
A. SA ⊥ BC. B. BH ⊥ SC. C. SA ⊥ AC. D. BH ⊥ AC.
help me !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Khẳng định D sai, khẳng định A,B,C đúng vì ta có AH ⊥ (SAB).
Đáp án D
Khẳng định D sai, khẳng định A,B,C đúng vì ta có A H ⊥ S A B
Đáp án B
Vì ∆ A B C cân tại C và H là trung điểm của AB nên C H ⊥ A B .
Mà S A ⊥ A B C ⇒ S A ⊥ C H ⇒ C H ⊥ S A B ⇒ C H ⊥ S A C H ⊥ S B C H ⊥ A K ⇒
Các khẳng định A,C và D đúng. Khẳng định B sai.
Chọn D.
+) Ta có :
⇒ Suy ra : A đúng.
+) Ta có :
⇒ Suy ra : C đúng.
+) Mặt khác : AH ⊥ CD nên:
⇒ Suy ra : D sai.
Đáp án B
Ta có B C ⊥ S A B C ⊥ A B ⇒ B C ⊥ S A B ⇒ A H ⊥ B C
LẠI CÓ A H ⊥ S B ⇒ A H ⊥ S B C
Các ý A, C, D đúng
A là khẳng định sai.
Vì \(SB\perp\left(ABC\right)\) nên \(SB\perp BC\)
Nếu \(SA\perp BC\Rightarrow SA||SB\) hoặc SA trùng SB (đều vô lý)