K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

N=7.(2007^2009-2013^1999)/10 (1) 
{Để chứng minh N nguyên thì cần c/m:2007^2009-2013^1999 chia hết cho 10} 
Ta có: 

*2007^2009 
=2007.(2007^4)^502 
=2007.(...1)^502 
=2007.(...1)=(...7) 

*2013^1999 
=2013^3.(2013^4)^499 
=(...7).(...1)^499 
=(...7).(...1)=(...7) 

=>2007^2009-2013^1999 
=(..7)-(...7)=(...0) 
nên chia hết cho 10 (2) 
Từ (1),(2)=>N thuộc Z và N là hợp số vì N chia hết cho 7 

22 tháng 11 2019

+ Nếu n chia hết cho 3 thì tích chia hết cho 3

+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3

+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3

=> tích chia hết cho 3 với mọi n

31 tháng 3 2019

Đề bài sai phải ko???

13 tháng 5 2017

Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

- Vì : 

 \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

...................

\(\frac{1}{n^2}< \frac{1}{n\left(n-1\right)}\)

Cộng vế với vế , ta suy ra 

A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{n-1}-\frac{1}{n}\)

\(1-\frac{1}{n}< 1\)

=> A<1 ( đpcm )

13 tháng 5 2017

Ta có:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)>\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)=\(\frac{1}{1}-\frac{1}{n}\)<1 => \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)

1 tháng 7 2016

\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\\ \)

  • Nếu n chia hết cho 5 thì A chia hết cho 5
  • Nếu n chia 5 dư 1 thì (n-1) chia hết cho 5 => A chia hết cho 5
  • Nếu n chia 5 dư 2 thì n = 5k +2 => n2 + 1 = 25k2 + 20k + 4 + 1 chia hết cho 5 => A chia hết cho 5
  • Nếu n chia 5 dư 3 thì n = 5k +3 => n2 + 1 = 25k2 + 30k + 9 + 1 chia hết cho 5 => A chia hết cho 5
  • Nếu n chia 5 dư 4 thì (n+1) chia hết cho 5 => A chia hết cho 5

n thuộc N lớn hơn hoặc bằng 2 chỉ có 5 trường hợp có số dư như trên khi chia cho 5. Nên A chia hết cho 5 với mọi n thuộc N lớn hơn hoặc bằng 2.

17 tháng 5 2017

Để phân số nhận giá trị nguyên 

=> 8n - 3 chia hết cho 4n + 2

8n + 4 - 4 - 3 chia hết cho 4n + 2

2(4n + 2) - 7 chia hết cho 4n + 2

=> 7 chia hết cho 4n + 2

=> 4n + 2 thuộc Ư(7) = {1 ; -1 ;7 ; -7}

Xét các giá trị trên , ta có bảng sau 

4n + 21-17-7
n-1/4 -3/4 5/4 -9/4
17 tháng 5 2017

Để 8n-3/4n+3 có giá trị là số nguyên thì 8n-3:4n+3

Ta có: 8n-3:4n+3

       =>8n+6-9:4n+3

       =>2(4n+3)-9:4n+3

   Mà 2(4n+3):4n+3

  =>9:4n+3

  =>4n+3 thuộc Ư(9)=-1;1;-3;3;-9;9

Nếu  4n+3=-1 thì n=-1

Nếu  4n+3=1 thì -0.5(loại)

Nếu  4n+3=-3 thì n=-1.5(loại)

Nếu  4n+3=3 thì n=0

Nếu 4n+3=-9 thì n=-3

Nếu 4n+3=9 thì n=1.5(loại)

Vậy n=-1;-3;0