Từ điểm A nằm ngoài đường tròn (O), vẽ cát tuyến ABC với đường tròn. Các tiếp tuyến của đường tròn tại B và C cắt nhau ở K. Qua K kẻ đường thẳng vuông góc với AO, cắt AO tại H và đường tròn (O) tại E và F (E nằm giữa K và F). Gọi M là giao điểm của OK và BC.gọi D là giao điểm của BC và EF chứng minh DB.AC =DC.AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nối CE, CF
Xét \(\Delta CEK\) và \(\Delta CFK\) có:
\(\widehat{ECK}\)= \(\widehat{CFK}\) (vì cùng chắn \(\widebat{CE}\))
\(\widehat{CKF}\) chung
\(\Rightarrow\)\(\Delta EKC~\Delta CKF\left(g.g\right)\)
\(\Rightarrow\frac{EK}{CK}=\frac{CK}{FK}\)
\(\Rightarrow CK^2=EK.FK\)(1)
Vì \(\Delta COK\)vuông tại C, \(CM\perp OK\)
\(\Rightarrow CK^2=MK.OK\)(2)
Từ (1), (2) \(\Rightarrow EK.FK=MK.OK\)
\(\Rightarrow\frac{EK}{MK}=\frac{OK}{FK}\)
Xét \(\Delta MEK\)và \(\Delta KOF\)có:
\(\widehat{MKE}\)chung
\(\frac{EK}{MK}=\frac{OK}{FK}\)
\(\Rightarrow\Delta MEK~\Delta FOK\left(c.g.c\right)\)
\(\Rightarrow\widehat{OFE}=\widehat{EMK}\)
\(\Rightarrow\)Tứ giác EMOF nội tiếp
a: Xét tứ giác OBKC có \(\widehat{OBK}+\widehat{OCK}=90^0+90^0=180^0\)
nên OBKC là tứ giác nội tiếp
=>O,B,K,C cùng thuộc một đường tròn
b: Ta có: ΔOMN cân tại O
mà OA là đường cao
nên OA là phân giác của góc MON
Xét ΔMOA và ΔNOA có
OM=ON
\(\widehat{MOA}=\widehat{NOA}\)
OA chung
Do đó: ΔMOA=ΔNOA
=>\(\widehat{OMA}=\widehat{ONA}\)
=>\(\widehat{ONA}=90^0\)
=>AN là tiếp tuyến của (O)
c: Xét (O) có
KB,KC là tiếp tuyến
Do đó: KB=KC
=>K nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OK là đường trung trực của BC
=>OK\(\perp\)BC tại I và I là trung điểm của BC
Xét ΔOBK vuông tại B có BI là đường cao
nên \(OI\cdot OK=OB^2\)
=>\(OI\cdot OK=ON^2\left(3\right)\)
d: Xét ΔNOA vuông tại N có NH là đường cao
nên \(OH\cdot OA=ON^2\left(4\right)\)
Từ (3) và (4) suy ra \(OI\cdot OK=OH\cdot OA\)
=>\(\dfrac{OI}{OH}=\dfrac{OA}{OK}\)
Xét ΔOIA và ΔOHK có
\(\dfrac{OI}{OH}=\dfrac{OA}{OK}\)
\(\widehat{HOK}\) chung
Do đó: ΔOIA đồng dạng với ΔOHK
=>\(\widehat{OIA}=\widehat{OHK}\)
=>\(\widehat{OHK}=90^0\)
mà \(\widehat{OHM}=90^0\)
nên K,H,M thẳng hàng
mà M,H,N thẳng hàng
nên K,M,N thẳng hàng
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trực của BC
hay OA⊥BC