Thực hiện phép tính
\(A=\left(1-\frac{1}{1+2}\right)\cdot\left(1-\frac{1}{1+2+3}\right)\cdot\cdot\cdot\cdot\left(1-\frac{1}{1+2+3+..+2006}\right)\)
Ai giỏi toán đâu, giup coi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thông cảm mình là học sinh giỏi toán nhưng mới học lớp 6 thui nên không biết
Ta có: \(1+2+..+n=\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow\frac{1}{1+2+...+n}=\frac{2}{n\left(n+1\right)}\)
\(\Rightarrow1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Áp dụng vào bài toán ta được
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+...+2006}\right)\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.....\frac{2005.2008}{2006.2007}=\frac{1}{3}.\frac{2008}{2006}=\frac{1004}{3009}\)