Tính \(\sqrt{1+999..9^2+0.999...9^2}\) (n chữ số 9)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^{2}={\underbrace{999\dots 9}_{\text{50 chữ số 9}}}^{2}=\left(10^{50}-1\right)^{2}=10^{100}-2\cdot 10^{50}+1=\left(10^{50}-2\right)\cdot 10^{50}+1=\underbrace{999\dots 9}_{\text{49 chữ số 9}}8\cdot10^{50}+1=\underbrace{999\dots 9}_{\text{49 chữ số 9}}8\underbrace{000\dots 0}_{\text{49 chữ số 0}}1\)
TỪ 01 ĐẾN 91 CÓ 11 số 1
101 đến 191 có 10+11=21 số 1
201 đến 291 co 11 số 1
................
901 đến 991 có 11 số 1
vậy tổng số 1 từ 1 đến 999 là 11x9+21=120 số
tương tự tổng số 2 từ 1 đến 999 là 11x9+21=120..........
vậy tổng các chữ số từ 1 đến 999 =120(1+2+....9)=120x45=5400
\(A=1+99..9^2+0,99..9^2=1+\left(10^n-1\right)^2+\left(\frac{10^n-1}{10^n}\right)^2\)
\(=\frac{10^{2n}+10^{2n}\left(10^n-1\right)^2+\left(10^n-1\right)^2}{10^{2n}}\)
\(=\frac{10^{4n}-2.10^{2n}.10^n+3.10^{2n}-2.10^n+1}{10^{2n}}\)
\(=\frac{10^{4n}+10^{2n}+1-2.10^{2n}.10^n+2.10^{2n}.1-2.10^n.1}{10^{2n}}\)
\(=\frac{\left(10^{2n}-10^n+1\right)^2}{10^{2n}}\)\(=\left(\frac{10^{2n}-10^n+1}{10^n}\right)^2\)
4,5C=9+99+999+...+99999...99(40 chữ số 9)
4,5C+40=(9+1)+(99+1)+...+(99999999....9+1)
4,5C+40=10+100+1000+...+1000000...00(40 chữ số 0)
4,5C+40=10+102+103+...+1040
4,5C+40=1041-10
C=(1041-10)-40:4,5