Cho AABC, tia phân giác của ACB cắt AB ở D. a) Biết BD = 4cm , AC = 6cm , BC = 5 cm. Tính độ dài đoạn thẳng AD.
b) Trên tia đối của tia CB lấy điểm I sao cho C là trung điểm của BI. Qua D kẻ đường thẳng song song với BI cắt AC và AI theo thứ tự tại H và E. Chứng minh H là trung điểm của DE.
c) Chứng minh: AE/EI = AC/CI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điểm E nằm giữa hai điểm C, D vì CD = 5cm > CE = 3cm.
b) Trong ba tia BD,BE,BC tia BE nằm giữa hai tia còn lại vì điểm E nằm giữa hai điểm C, D.
c) DE = 2cm.
d) D là trung điểm của đoạn thẳng AE vì AD = DE = 2cm.
e) Đoạn thẳng BD là cạnh, của các tam giác: BDA, BDE,BDC.
Xét ΔCAB và ΔCED có
\(\widehat{CAB}=\widehat{CED}\)(hai góc so le trong, DE//AB)
\(\widehat{ACB}=\widehat{ECD}\)(hai góc đối đỉnh)
Do đó: ΔCAB đồng dạng với ΔCED
=>\(\dfrac{CA}{CE}=\dfrac{AB}{ED}=\dfrac{CB}{CD}\)
=>\(\dfrac{12}{CE}=\dfrac{18}{ED}=\dfrac{9}{3}=3\)
=>\(CE=\dfrac{12}{3}=4\left(cm\right);ED=\dfrac{18}{3}=6\left(cm\right)\)
Câu d nè bn.
d, ✳️ Xét ∆ ABC vuông tại A có góc ACB= 30° (gt)
➡️Góc ABC = 60°
mà ∆ BFC cân tại B (BI là đg phân giác đồng thời là đg cao)
➡️∆ BFC đều
➡️BC = FC = FB
✳️ Xét ∆ ABC vuông tại A có góc ACB = 30° (gt)
➡️AB = 1/2 BC (t/c)
➡️BC = 2 AB
Theo Pitago ta có:
BC 2 = AB 2 + AC 2
➡️(2 AB) 2 = AB 2 + AC 2
➡️4 AB 2 - AB 2 = AC 2
➡️3 AB 2 = AC 2
➡️3 AB 2 = 25
➡️AB 2 = 25 ÷ 3 = 25/3
Vậy ta có: BC 2 = 25/3 + 25 = 100/3
➡️BC = √100/3
mà BC = FC (cmt)
➡️FC = √100/3
Vậy đó, hok tốt nhé
a: CD là phân giác
=>BD/DA=BC/CA
=>4/DA=5/6
=>DA=4:5/6=24/5=4,8cm
b: HE//CI
=>HE/CI=AH/AC
HD//BC
=>HD/BC=AH/AC
=>HE/CI=HD/BC
mà CI=BC
nên HE=HD
=>H là trung điểm của ED
c: AE/EI=AH/HC
AC/CI=AC/CB=AD/DB
=>AE/EI=AC/CI