Tìm số dư khi chia S = 1 + 3^2 + 3^3 + .....+ 3^100 khi chia cho 121
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(S=1+3+3^2+3^3+...+3^{100}\)
\(=\left(1+3+3^2+3^3+3^4\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=1\left(1+3+3^2+3^3+3^4\right)+...+3^{96}\left(1+3+3^2+3^3+3^4\right)\)
\(=1.121+...+3^{96}.121\)
\(=121\left(1+...+3^{96}\right)⋮121\)
Vậy \(S\div121\) có chữ số tận cùng là \(0\)
S=1-3+3\(^2\)-....+3\(^{98}\)-3\(^{99}\)(1)
\(\Rightarrow\)3S=3-3\(^2\)+3\(^3\)+...+3\(^{99}\)-3\(^{100}\)(2)
Từ(1)và(2)\(\Rightarrow\)4S=1-3\(^{100}\)
Do S chia hết cho -20\(\Rightarrow\)4S chia hết cho -20
\(\Rightarrow\)4S chia hết cho 4\(\Rightarrow\)1-3\(^{100}\)chia hết cho 4
\(\Rightarrow\)3\(^{100}\)chia hết 4 dư 1
Lời giải:
$C=(1+3+3^2+3^3)+(3^4+3^5+3^6+3^7)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})$
$=(1+3+3^2+3^3)+3^4(1+3+3^2+3^3)+....+3^{2013}(1+3+3^2+3^3)$
$=(1+3+3^2+3^3)(1+3^4+...+3^{2013})$
$=40(1+3^4+....+3^{2013})\vdots 40$
----------------------------------
Lại có:
$C=(1+3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8+3^9)+....+(3^{2012}+3^{2013}+3^{2014}+3^{2015}+3^{2016})$
$=(1+3+3^2+3^3+3^4)+3^5(1+3+3^2+3^3+3^4)+....+3^{2012}(1+3+3^2+3^3+3^4)$
$=(1+3+3^2+3^3+3^4)(1+3^5+....+3^{2012})$
$=121(1+3^5+....+3^{2012})\vdots 121$
Bạn liệt kê ra thành từng nhóm
+ Nhóm chia hết cho 7
+ Nhóm chia 7 dư 1
+ Nhóm chia 7 dư 2
+ Nhóm chia 7 dư 3
...........................
+ Nhóm chia 7 dư 6
a/
\(a=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right).\)
\(a=40+3^4.40+3^8.40=40\left(1+3^4+3^8\right)\) Chia hết cho 40