Bài 1:
Chứng tỏ rằng phân số \(\frac{n+1}{2n+1}\)với n \(\varepsilon\)N và n \(\notin\)0
Bài 2:
Tìm n\(\in\)N để \(\frac{n+7}{n-2}\)\(\in\)Z
Bài 3:
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}< 1\)
b) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+\frac{4}{17.21}< 1\)
c) \(\frac{4}{3.5}+\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{37.39}>\frac{7}{13}\)
Bài 4:
Tính:
A = \(\frac{\frac{2}{3}+\frac{2}{5}-\frac{2}{9}}{\frac{4}{3}+\frac{4}{5}-\frac{4}{9}}\)
Ai nhanh và đúng nhất mình tick cho !!!
bạn k cho mình chưa zậy ko là xóa kết bạn đây