36 Câu 9. (3,0 điểm) Cho tam giác ABC vuông tại A, đường cao AH . 1. Chứng minh rằng tam giác ABC đồng dạng với tam giác HBA. 2. Qua B kẻ đường thẳng d vuông góc với BC . Gọi M là trung điểm của AB. Đường thẳng vuông góc với AB cắt đường thẳng d tại K và cắt BC tại I . Chứng minh rằng: qua M a) Tam giác BKI đồng dạng với tam giác ABC; KI.AC= (BC)/2 : b) KC đi qua trung điểm của AH.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
2: Sửa đề: \(HA\cdot HB=HC\cdot HD\)
Xét ΔHAC vuông tại H và ΔHDB vuông tại H có
\(\widehat{HAC}=\widehat{HDB}\)(hai góc so le trong, BD//AC)
Do đó: ΔHAC~ΔHDB
=>\(\dfrac{HA}{HD}=\dfrac{HC}{HB}\)
=>\(HA\cdot HB=HD\cdot HC\)
Xét ΔABC vuông tại A và ΔBDA vuông tại B có
\(\widehat{ABC}=\widehat{BDA}\left(=90^0-\widehat{HAB}\right)\)
Do đó: ΔABC~ΔBDA
=>\(\dfrac{AC}{BA}=\dfrac{AB}{BD}\)
=>\(AB^2=AC\cdot BD\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>\(AC\cdot BD=BH\cdot BC\)
a: Xet ΔHBA và ΔABC có
góc BHA=góc BAC
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: ΔABC vuông tại A có AH vuông góc BC
nên BA^2=BH*BC
\(AB=\sqrt{3\cdot12}=6\left(cm\right)\)
\(AH=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)
c: Xet ΔCAE có KD//AE
nên KD/AE=CK/CE
Xét ΔCEB có KH//EB
nên KH/EB=CK/CE=KD/AE
mà AE=EB
nên KH=KD
1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
2: Xét ΔBKI vuông tại B và ΔABC vuông tại A có
góc BIK=góc ACB
=>ΔBKI đồng dạng vơi ΔABC