K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{20}\right)\)

\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{19}{20}=\frac{1.2.3.4....19}{2.3.4.5....20}=\frac{1}{20}\)

Vậy B=1/20

27 tháng 9 2017

a/ \(B=\left(\frac{1}{\sqrt{x}+2}+\frac{7}{x-4}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-2}-1\right)\)

=> \(B=\left(\frac{1}{\sqrt{x}+2}+\frac{7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-2}\right)\)

=> \(B=\frac{\sqrt{x}+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{1}{\sqrt{x}-2}\)

=> \(B=\frac{\sqrt{x}+5}{\sqrt{x}+2}\)

b/ B>2  <=> \(\frac{\sqrt{x}+5}{\sqrt{x}+2}>2\) <=> \(\sqrt{x}+5>2\sqrt{x}+4\)

<=> \(1>\sqrt{x}\)=> \(-1\le x\le1\)

c/ \(B=\frac{\sqrt{x}+5}{\sqrt{x}+2}=\frac{\sqrt{x}+2+3}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}\)

Để Bmax thì \(\sqrt{x}+2\) đạt giá trị nhỏ nhất . Do \(\sqrt{x}+2\ge2\)=> Đạt nhỏ nhất khi x=0

Khí đó giá trị lớn nhất của B là: \(1+\frac{3}{2}=\frac{5}{2}\)Đạt được khi x=0

13 tháng 8 2015

 ====== 83/88 

19 tháng 4 2016

Sai Đề

19 tháng 4 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)..................\left(1-\frac{1}{20}\right)\)

=\(\frac{1}{2}.\frac{2}{3}.............\frac{19}{20}\) 

=\(\frac{1.2.3..............19}{2.3.4..............20}\) 

=\(\frac{1}{20}\)

 

1 tháng 5 2019

\(B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}......\frac{21}{20}\)

\(B=\frac{21}{2}\)

@@@

1 tháng 5 2019

\(B=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{20}\right)\)

\(\Rightarrow B=\left(\frac{2}{2}+\frac{1}{2}\right)\left(\frac{3}{3}+\frac{1}{3}\right)\left(\frac{4}{4}+\frac{1}{4}\right)...\left(\frac{20}{20}+\frac{1}{20}\right)\)

\(\Rightarrow B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{21}{20}\)

\(\Rightarrow B=\frac{21}{2}\)

15 tháng 6 2017

Tính 

a) 

\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}\\ =\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{99.101}{100}\\ \)

\(=\left(\frac{1.2.3...99}{2.3...100}\right).\left(\frac{3.4.5...101}{2.3.4...100}\right)\\ =\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)

b) 

\(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}\\ < \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\\ \)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\\ =1-\frac{1}{n}< 1\)

15 tháng 6 2017

đờ mờ sao mày ra đề ác thế

21 tháng 7 2015

Ta có:\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{20}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}=\frac{1}{20}\)

12 tháng 4 2016

@@@@@

4 tháng 7 2016

\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{20}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{19}{20}\)

\(=\frac{1\cdot2\cdot...\cdot19}{2\cdot3\cdot...\cdot20}\)

\(=\frac{1}{20}\)

6 tháng 5 2019

B= \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\)\(\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)

B= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)\(\frac{1}{20}\)

vậy B= \(\frac{1}{20}\)

6 tháng 5 2019

b,A=(1/101+1/102+...+1/150)+(1/151+1/152+...1/200)>25/125+25/150+25/175+25/200=(1/5+1/6+1/7)+1/8=107/201+1/8>1/2+2/8=5/8

Vậy A>5/8

Nhớ k mik nha!!!!!!!!!!!!!