K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\dfrac{16}{x+4}+\dfrac{16}{x-4}=\dfrac{5}{3}\)

=>\(\dfrac{16x-64+16x+64}{x^2-16}=\dfrac{5}{3}\)

=>5(x^2-16)=3*32x=96x

=>5x^2-96x-80=0

=>x=20 hoặc x=-4/5

19 tháng 3 2023

nếu là giải PT bằng cách quy đồng:

25x2 + 480 - 400 = 0

làm sao để phan tích ra ạ.

1: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)

\(\Leftrightarrow\dfrac{5x^2-12}{\left(x-1\right)\left(x+1\right)}+\dfrac{3x+3}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x^2-5x}{\left(x+1\right)\left(x-1\right)}\)

Suy ra: \(5x^2+3x-9=5x^2-5x\)

\(\Leftrightarrow8x=9\)

hay \(x=\dfrac{9}{8}\left(tm\right)\)

2: Ta có: \(\dfrac{3}{x-5}-\dfrac{15-3x}{x^2-25}=\dfrac{3}{x+5}\)

\(\Leftrightarrow\dfrac{3x+15}{\left(x-5\right)\left(x+5\right)}+\dfrac{3x-15}{\left(x-5\right)\left(x+5\right)}=\dfrac{3x-15}{\left(x+5\right)\left(x-5\right)}\)

Suy ra: \(6x=3x-15\)

\(\Leftrightarrow3x=-15\)

hay \(x=-5\left(loại\right)\)

 

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

2. ĐKXĐ: $x\neq \pm 5$
PT \(\Leftrightarrow \frac{3}{x-5}+\frac{3x-15}{x^2-25}=\frac{3}{x+5}\)

\(\Leftrightarrow \frac{3}{x-5}+\frac{3(x-5)}{(x-5)(x+5)}=\frac{3}{x+5}\)

\(\Leftrightarrow \frac{3}{x-5}+\frac{3}{x+5}=\frac{3}{x+5}\Leftrightarrow \frac{3}{x-5}=0\) (vô lý)

Vậy pt vô nghiệm.

 

17 tháng 1 2023

\(1,\left(dk:x\ne0,-1,4\right)\)

\(\Leftrightarrow\dfrac{9}{x+1}+\dfrac{2}{x-4}-\dfrac{11}{x}=0\)

\(\Leftrightarrow\dfrac{9x\left(x-4\right)+2x\left(x+1\right)-11\left(x+1\right)\left(x-4\right)}{x\left(x+1\right)\left(x-4\right)}=0\)

\(\Leftrightarrow9x^2-36x+2x^2+2x-11x^2+44x-11x+44=0\)

\(\Leftrightarrow-x=-44\)

\(\Leftrightarrow x=44\left(tm\right)\)

\(2,\left(đk:x\ne4\right)\)

\(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{2+x}{x-4}-\dfrac{3}{2\left(x-4\right)}+\dfrac{5}{6}=0\)

\(\Leftrightarrow\dfrac{14.2-6\left(2+x\right)-3.3+5\left(x-4\right)}{6\left(x-4\right)}=0\)

\(\Leftrightarrow28-12-6x-9+5x-20=0\)

\(\Leftrightarrow-x=13\)

\(\Leftrightarrow x=-13\left(tm\right)\)

17 tháng 1 2023

bn ơi ktra lại câu 2 giúp mk đc ko 

7 tháng 1 2023

\(x-\dfrac{\dfrac{x}{3}-\dfrac{3+x}{2}}{4}=\dfrac{x-\dfrac{15-7x}{3}}{4}-2x+3\)

\(<=>4x-\dfrac{x}{3}+\dfrac{3+x}{2}=x-\dfrac{15-7x}{3}-8x+12\)

`<=>24x-2x+3(3+x)=6x-2(15-7x)-48x+72`

`<=>24x-2x+9+3x=6x-30+14x-48x+72`

`<=>53x=33`

`<=>x=33/53`

17 tháng 9 2023

\(\dfrac{1}{3}\sqrt[]{9x+9}-2\sqrt[]{x+1}+8\sqrt[]{\dfrac{4x+4}{25}}=11\)

\(\Leftrightarrow\dfrac{1}{3}\sqrt[]{9\left(x+1\right)}-2\sqrt[]{x+1}+8\sqrt[]{\dfrac{4\left(x+1\right)}{25}}=11\)

\(\Leftrightarrow\sqrt[]{x+1}-2\sqrt[]{x+1}+\dfrac{16}{5}\sqrt[]{x+1}=11\)

\(\Leftrightarrow\dfrac{11}{5}\sqrt[]{x+1}=11\)

\(\Leftrightarrow\sqrt[]{x+1}=5\)

\(\Leftrightarrow x+1=25\)

\(\Leftrightarrow x=24\)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Nhớ viết thêm điều kiện vào nữa, ở đây điều kiện là \(x\ge-1\)

Mỗi số hạng của vế trái cộng thêm 1, vế phải = 5. Mỗi số hạng vế trái có mẫu số giống nhau, bạn đặt x+ 2020 làm nhân tử chung, phần còn lại tự làm nhé.

mấy bài còn lại bạn đăng cx làm tương tự

27 tháng 1 2019

\(\frac{x+24}{1996}+\frac{x+25}{1995}+\frac{x+26}{1994}+\frac{x+27}{1993}+\frac{x+2036}{4}=0\)

\(\Leftrightarrow\left(\frac{x+24}{1996}+1\right)+\left(\frac{x+25}{1995}+1\right)+\left(\frac{x+26}{1994}+1\right)+\left(\frac{x+27}{1993}+1\right)+\left(\frac{x+2036}{4}-4\right)=0\)

\(\Leftrightarrow\frac{x+2020}{1996}+\frac{x+2020}{1995}+\frac{x+2020}{1994}+\frac{x+2020}{1993}+\frac{x+2020}{4}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{1996}+\frac{1}{1995}+\frac{1}{1994}+\frac{1}{1993}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow x+2020=0\)

\(\Leftrightarrow x=-2020\)

Vậy ....

a: Ta có: \(4x-2\left(1-x\right)=5\left(x-4\right)\)

\(\Leftrightarrow4x-2+2x=5x-20\)

\(\Leftrightarrow x=-18\)

b: Ta có: \(\dfrac{x}{6}+\dfrac{1-3x}{9}=\dfrac{-x+1}{12}\)

\(\Leftrightarrow6x+4\left(1-3x\right)=3\left(-x+1\right)\)

\(\Leftrightarrow6x+4-12x=-3x+3\)

\(\Leftrightarrow-3x=-1\)

hay \(x=\dfrac{1}{3}\)

c: Ta có: \(\left(x+2\right)^2-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

29 tháng 8 2021

undefined

1: Ta có: \(\dfrac{3}{x-3}+\dfrac{4}{x+3}=\dfrac{3x-7}{x^2-9}\)

\(\Leftrightarrow\dfrac{3x+9}{\left(x-3\right)\left(x+3\right)}+\dfrac{4x-12}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-7}{\left(x-3\right)\left(x+3\right)}\)

Suy ra: \(3x+9+4x-12=3x-7\)

\(\Leftrightarrow4x=-7+12-9=-4\)

hay \(x=-1\left(nhận\right)\)

2: Ta có: \(\dfrac{3}{x-4}-\dfrac{4}{x+4}=\dfrac{3x-4}{x^2-16}\)

\(\Leftrightarrow\dfrac{3x+12}{\left(x-4\right)\left(x+4\right)}-\dfrac{4x-16}{\left(x+4\right)\left(x-4\right)}=\dfrac{3x-4}{\left(x-4\right)\left(x+4\right)}\)

Suy ra: \(3x+12-4x+16=3x-4\)

\(\Leftrightarrow28-4x=-4\)

\(\Leftrightarrow4x=32\)

hay \(x=8\left(tm\right)\)

3: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)

Suy ra: \(5x^2-12+3x+3=5x^2-5x\)

\(\Leftrightarrow3x-9+5x=0\)

\(\Leftrightarrow8x=9\)

hay \(x=\dfrac{9}{8}\left(nhận\right)\)

18 tháng 1 2019

a.

\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)

\(\Leftrightarrow\left(4x^2+8x+3\right)\left(x^2+2x+1\right)=18\)

Đặt \(t=x^2+2x+1=\left(x+1\right)^2\left(t\ge0\right)\)

\(\Rightarrow\left(4t-1\right)\cdot t=18\)

\(\Leftrightarrow\left(2t\right)^2-2\cdot2t\cdot\dfrac{1}{4}+\dfrac{1}{16}=\dfrac{289}{16}\)

\(\Leftrightarrow\left(2t-\dfrac{1}{4}\right)^2=\dfrac{289}{16}\Leftrightarrow\left(t-\dfrac{1}{8}\right)^2=\dfrac{289}{64}\)

\(\Leftrightarrow\left[{}\begin{matrix}t-\dfrac{1}{8}=\dfrac{17}{8}\\t-\dfrac{1}{8}=-\dfrac{17}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{9}{4}\\t=-2\left(loai\right)\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^2=\dfrac{9}{4}\Leftrightarrow\left[{}\begin{matrix}x+1=\dfrac{3}{2}\\x+1=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{5}{2};\dfrac{1}{2}\right\}\)

b.

Ta có:

- \(x^2+4x+3=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)

- \(x^2+11x+24=x^2+3x+8x+24=x\left(x+3\right)+8\left(x+3\right)=\left(x+3\right)\left(x+8\right)\)

- \(x^2+18x+80=x^2+8x+10x+80=x\left(x+8\right)+10\left(x+8\right)=\left(x+8\right)\left(x+10\right)\)

Thay vào phương trình, ta được:

\(\dfrac{2}{\left(x+1\right)\left(x+3\right)}+\dfrac{5}{\left(x+3\right)\left(x+8\right)}+\dfrac{2}{\left(x+8\right)\left(x+10\right)}=\dfrac{9}{25}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+8}+\dfrac{1}{x+8}-\dfrac{1}{x+10}=\dfrac{9}{25}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+10}=\dfrac{9}{25}\)

\(\Leftrightarrow\dfrac{x+10-\left(x+1\right)}{\left(x+1\right)\left(x+10\right)}=\dfrac{9}{25}\Leftrightarrow\dfrac{9}{\left(x+1\right)\left(x+10\right)}=\dfrac{9}{25}\)

\(\Leftrightarrow\left(x+1\right)\left(x+10\right)=25\)

\(\Leftrightarrow x^2+11x+\dfrac{121}{4}=\dfrac{181}{4}\)

\(\Leftrightarrow\left(x+\dfrac{11}{2}\right)^2=\dfrac{181}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{11}{2}=\dfrac{\sqrt{181}}{2}\\x+\dfrac{11}{2}=-\dfrac{\sqrt{181}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11+\sqrt{181}}{2}\\x=\dfrac{-11-\sqrt{181}}{2}\end{matrix}\right.\)

Vậy \(S=\left\{\dfrac{-11+\sqrt{181}}{2};\dfrac{-11-\sqrt{181}}{2}\right\}\)

25 tháng 7 2023

Bài 2:

a) \(2\sqrt{125}+\dfrac{3}{2}\sqrt{80}-\sqrt{180}-\dfrac{2}{7}\sqrt{245}\)

\(=2\sqrt{5^2\cdot5}+\dfrac{3}{2}\sqrt{4^2\cdot5}-\sqrt{6^2\cdot5}-\dfrac{2}{7}\sqrt{7^2\cdot5}\)

\(=10\sqrt{5}+\dfrac{3\cdot4}{2}\sqrt{5}-6\sqrt{5}-\dfrac{2\cdot7}{7}\sqrt{5}\)

\(=10\sqrt{5}+6\sqrt{6}-6\sqrt{5}-2\sqrt{5}\)

\(=8\sqrt{5}\)

b) \(\sqrt{11-4\sqrt{7}}-\sqrt{16+6\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}\right)^2-2\cdot2\cdot\sqrt{7}+2^2}-\sqrt{\left(\sqrt{7}\right)^2+2\cdot3\cdot\sqrt{7}+3^2}\)

\(=\sqrt{\left(\sqrt{7}-2\right)^2}-\sqrt{\left(\sqrt{7}+3\right)^2}\)

\(=\sqrt{7}-2-\sqrt{7}-3\)

\(=-5\)

25 tháng 7 2023

\(2a,\\ 2\sqrt{125}+\dfrac{3}{2}.\sqrt{80}-\sqrt{180}-\dfrac{2}{7}\sqrt{245}\\ =2\sqrt{5^2.5}+\dfrac{3}{2}.\sqrt{4^2.5}-\sqrt{6^2.5}-\dfrac{2}{7}.\sqrt{7^2.5}\\ =2.5.\sqrt{5}+\dfrac{3}{2}.4.\sqrt{5}-6\sqrt{5}-\dfrac{2}{7}.7\sqrt{5}\\ =10\sqrt{5}+6\sqrt{5}-6\sqrt{5}-2\sqrt{5}=8\sqrt{5}\)