Cho phương trình: x2 - 2(m - 1)x + m2 - 3m = 0 . Giải phương trình khi m = −2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay m=0 vào phương trình (1), ta được:
\(x^2-2\cdot\left(0-1\right)x+0^2-3m=0\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy: Khi m=0 thì S={0;-2}
Khi m=-2 thì pt sẽ là:
x^2-2(-2-1)x+(-2)^2-3=0
=>x^2+6x+1=0
=>\(x=-3\pm2\sqrt{2}\)
a. Em tự giải
b.
\(\Delta'=\left(m-1\right)^2-\left(m^2-6\right)=-2m+7\)
Pt đã cho có 2 nghiệm khi: \(-2m+7\ge0\Rightarrow m\le\dfrac{7}{2}\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-6\end{matrix}\right.\)
\(x_1^2+x_2^2=16\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=16\)
\(\Leftrightarrow4\left(m-1\right)^2-2\left(m^2-6\right)=16\)
\(\Leftrightarrow2m^2-8m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=4>\dfrac{7}{2}\left(loại\right)\end{matrix}\right.\)
Vậy \(m=0\)
\(Denta=\left(2m-3\right)^2-4\left(m^2-3m\right)=9< 0\Rightarrow\) pt lluôn có 2 nghiệm pb với mọi x
\(x_1=\frac{\left[2m-3+9\right]}{2}=m+3\)
\(x_2=\frac{\left[2m-3-9\right]}{2}=m-6\)
P/s: Tới đây là dễ rồi, tự giải tiếp nha!
a, Thay m = 0 vào phương trình trên ta được
\(x^2-2x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=3\)
Vậy với m = 0 thì x = -1 ; x = 3
a) Thay \(x=1\) vào phương trình, ta được:
\(1+2m+1+m^2-3m=0\) \(\Rightarrow m\in\varnothing\)
Vậy khi \(x=1\) thì phương trình vô nghiệm
b) Xét phương trình, ta có: \(\Delta=16m+1\)
Để phương trình có nghiệm \(\Leftrightarrow\Delta\ge0\) \(\Leftrightarrow m\ge-\dfrac{1}{16}\)
Vậy \(m\ge-\dfrac{1}{16}\)
Thay \(m=-2\) vào pt : \(x^2-2\left(m-1\right)x+m^2-3m=0\)
\(\Rightarrow x^2-2\left(-2-1\right)x+\left(-2\right)^2-3.\left(-2\right)=0\)
\(\Rightarrow x^2+6x+4+6=0\)
\(\Rightarrow x^2+6x+10=0\)
\(\Delta=b^2-4ac=6^2-4.10.1=-4< 0\)
Vậy pt vô nghiệm khi m = -2