(x+3)^9-(x+3)^7=0.Ai giúp với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,x.(3\4+2\5)=1
x.20\23=1
x=1:20\23
x=20\23
b,x-9\11=0 hoặc x-25\31=0
x=9\11 x=25\31
c,x-3\7.9\14=7\3
x-2\3=7\3
x=7\3+2\3
x=9\3
x=3
1) \(\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
2) \(x^2-2x=24\)
\(\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow x^2+4x-6x-24=0\)
\(\Leftrightarrow x\left(x+4\right)-6\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b) (5/2-3x)=25/9
3x = 5/2-25/9
3x =-5/18
x =-5/18:3
x=-5/54
\(e.\left(x-1\right)^5=-32\)
\(\left(x-1\right)^5=\left(-2\right)^5\)
\(x-1=-2\)
\(x\) \(=-2+1\)
\(x\) \(=-1\)
Vậy \(x=-1\)
\(a,-2.\left(x+7\right)+3.\left(x-2\right)=-2\)
\(-2x-14+3x-6=-2\)
\(x-20=-2\)
\(x=-2+20\)
\(x=18\)
\(b,-7-2x=-37-\left(-26\right)\)
\(-7-2x=-11\)
\(-2x=-11+7\)
\(-2x=-4\)
\(x=2\)
\(c,\left(3x+9\right).\left(11-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+9=0\\11-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=11\end{cases}}}\)
\(\orbr{\begin{cases}3x+9=0\\11-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}3x=-9\\x=11\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=11\end{cases}}\)
x - 4/5 = 3/7
x = 3/7 + 4/5
x = 43/35
x + 3/7 = 4/5
x = 4/5 - 3/7
x = 13/35
19/20 - x = 8/5 - 3/4
19/20 - x = 17/20
x = 19/20 - 17/20
x = 2/20 = 1/10
4/5 x X = 6/9 - 4/7
4/5 x X = 2/21
x = 2/21 : 4/5
x =5/42
x : 7/9 = 6/8
x = 6/8 x 7/9
x = 7/12
2/3 - x/6 = 6/18
x/6 = 2/3 - 6/18
x/6 = 1/3
x/6 = 2/6
=> x =2
1. x = 43/35
2. x = 13/35
3. x = 1/10
còn lại tự tính nhá
tui bận òi
: 1/ (x+1)(x+3)(x+5)(x+7) + 15 = [ (x+1)(x+7) ].[ (x+3)(x+5) ] + 15
= (x² + 7x + x + 7).(x² + 5x + 3x + 15) + 15
= (x² + 8x + 7).(x² + 8x + 15) + 15
= (x² + 8x + 11 - 4)(x² + 8x + 11 + 4) + 15. Đặt x² + 8x + 11 = y (1) ta được.
(t - 4)(t + 4) + 15 = t² - 16 + 15 = t² - 1 = (t+1)(t-1) (2).
Thay (1) vào (2) ta được: đa thức trên được phân tích thành:
(x² + 8x + 11 + 1)(x² + 8x + 11 - 1) = x² + 8x + 12)(x² + 8x + 10).
Lưu ý: phương pháp này có tên là "Đặt ẩn phụ".
2/ x^7 - x² - 1 = x^7 - x² - 1 + x - x = (x^7 - x) + (-x² + x - 1)
= x(x^6 - 1) - (x² - x + 1) = x(x³ - 1)(x³ + 1) - (x² - x + 1)
= (x^4 - x)(x + 1)(x² - x + 1) - (x² - x + 1)
= (x² - x + 1).[ (x^4 - x)(x + 1) - 1 ]
= (x² - x + 1).(x^5 + x^4 - x² - x - 1).
3/ x^4 + 4y^4 = x^4 + 4y^4 + 4x²y² - 4x²y²
= (x^4 + 4x²y² + 4y^4) - (2xy)²
= (x² + 2y²)² - (2xy)² = [ (x² + 2y²) + (2xy) ].[ (x² + 2y²) - (2xy) ]
= (x² + 2xy + 2y²).(x² - 2xy + 2y²)
4/ x^5 + x + 1 = x^5 + x + 1 + x² - x²
= (x^5 - x²) + (x² + x + 1) = x²(x³ - 1) + (x² + x + 1)
= x²(x - 1)(x² + x + 1) + (x² + x + 1) = (x² + x + 1).[ x²(x - 1) + 1 ]
= (x² + x + 1).(x³ - x² + 1).
5/ x^5 + x - 1 = x^5 + x - 1 + x² - x² = (x^5 + x²) + (-x² + x - 1)
= x²(x³ + 1) - (x² + x - 1) = x²(x + 1)(x² - x + 1) - (x² - x + 1)
= (x² - x + 1).[ x²(x + 1) - 1 ] = (x² - x + 1).(x³ + x² - 1).
6/ (x² + y² - z²)² - 4x²y² = (x² + y² - z²)² - (2xy)²
= [ (x² + y² - z²) - 2xy ].[ (x² + y² - z²) + 2xy ]
= [ x² + y² - z² - 2xy ].[ x² + y² - z² + 2xy ]
= [ (x² - 2xy + y²) - z² ].[ (x² + 2xy + y²) - z² ]
= [ (x - y)² - z² ].[ (x + y)² - z² ] = (x-y+z)(x-y-z)(x+y+z)(x+y-z).
Mong bạn sẽ hiểu
\(\Leftrightarrow\left(x+3\right)^7\left[\left(x+3\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x+3\right)^7\left(x-2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-4\end{matrix}\right.\)
Vậy...