co ai hoc gioi toan 8 ko minh hoi 1 bai toan thui
Ch tam giac ABC(AB=AC) ve cac duong p giac BD va CE
a/Chung minh BE=Ce
b/chung minh ED//BC
c/Biet AB=AC=6cm,BC=4cm Tinh AD,DC,ED
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A +B + C =180độ
=>90 độ + 60 độ + C =180 độ
=> C =30 độ
Mà 30 độ < 60 độ <90 độ
=>C < B < A
=> AB < AC < BC
b)Xét tam giác vuông ABD(vuông ở A) và tam giác vuong KDB(vuông ở K)
Cạnh BK chung
ABD = DBK ( vì BK là phân giác góc B)
=> Tam giác ABD = Tam giác KDB(cạnh huyền - góc nhọn)
c) Vì BK là phân giác góc B => KBD = 1/2 B = 1/2 60 độ =30 độ
Mà C =30 độ
=>KBD = C = 30 độ
=> Tam giác BDC cân ở D
Vì tam giác ABD = Tam giác KDB nên BA=BK(2 cạnh tương ứng) (1)
Mà góc C=30 độ,A =90 độ
Áp dụng tính chất góc đối diện với cạnh 30 độ =1/2 cạnh huyền => AB =1/2 BC (2)
Từ (1) và (2) => BA=BK=1/2 BC
d)BA = BK = 1/2 BC => BC= 3 x 2=6
Xét tam giác ADI và tam giác KDC :
ADI = KDC(2 góc đối đình)
AD=DK( 2 cạnh tương ứng của tam giác ABD và tam giác KBD)
DAI=DKC ( 2 góc kề bù với 2 góc 90 độ)
=> Tam giác ADI = Tam giác KDC( góc - cạnh - góc)
=>AI = KC(2 cạnh tương ứng)
Mà KC=1/2 BC =>AI=CK=3 cm
Những chỗ có gạch trên đầu là kí hiệu của góc nhé(vì ở đây ko thấy kí hiệu mũ nên phải viết gạch ngang)
Nếu có chỗ nào không hiểu bạn cứ viết đi,mình giải thích cho
a) Áp dụng định lí Pi - ta - go, ta có:
102 - 52 = 75 => AC = \(\sqrt{75}\)
Còn mấy phần kia mình hơi vội nên chưa lm đc thông cảm nhé
Giải
a) Dùng định lí PYTHAGO đảo.
b) Chứng minh tam giác ADB=tam giác ADE
c) Sử dụng 2 góc đối đỉnh, cặp cạnh bằng nhau từ câu b để chứng minh 2 tam giác bằng nhau.
Chứng minh DF>BD mà BD=DE => DF>DE
d) Sử dụng khéo léo các đoạn thẳng lớn hơn nhau, các đoạn thẳng cọng lại với nhau ra đoạn chính.
Bài không khó, cố làm nhé. Câu cuối mình lười không viết, để bạn khác hd cũng được. Mình khuyến khích tự nghĩ
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
a: Gọi K là trung điểm của CD
Xét ΔBDC có
M là trung điểm của BC
K là trung điểm của CD
Do đó: MK là đường trung bình
=>MK//BD
hay MK//ID
Xét ΔAMK có
I là trung điểm của AM
ID//MK
Do đó: D là trung điểm của AK
=>AD=DK=KC
=>AD=DC/2
b: Xét ΔAMK có
I là trung điểm của AM
D là trung điểm của AK
Do đó: ID là đường trung bình
=>ID=MK/2
hay MK=2ID
Xét ΔBDC có
M là trung điểm của BC
K là trung điểm của CD
Do đó: MK là đường trung bình
=>MK=1/2BD
=>2ID=1/2BD
=>BD/ID=4
a. Xét tam giác ABC có:
AC2 + AB2 = 122 +92 = 144 + 81 =225 (cm)
BC2 = 152 = 225 (cm)
Suy ra: AC2 + AB2 = BC2
=> Tam giác ABC vuông tại A
b.
Ta có AD là phân giác của góc B
=> \(\dfrac{DA}{DC}=\dfrac{BA}{BC}\) ( Tính chất đường phân giác trong tam giác)
\(\Leftrightarrow\dfrac{DA}{DC}=\dfrac{9}{15}=\dfrac{3}{5}\)
\(\Rightarrow\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{3}{2}\)
Suy ra: \(\dfrac{DA}{3}=\dfrac{3}{2}\Rightarrow DA=\dfrac{3.3}{2}=4,5\)
\(\dfrac{DC}{5}=\dfrac{3}{2}\Rightarrow DC=\dfrac{5.3}{2}=7,5\)
Vậy: DA = 4,5 (cm) và DC = 7,5(cm)