\(S=\frac{3^2}{4}-\frac{3^2}{28}-\frac{3^2}{70}-....-\frac{3^2}{868}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S= - 32\(\left(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{868}\right)\)
S = - 32\(\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{28.31}\right)\)
S = - 3\(\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{28.31}\right)\)
S = -3\(\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{28}-\frac{1}{31}\right)\)
S = -3 \(\left(1-\frac{1}{31}\right)\)
S = -3\(.\frac{30}{31}\)
S = -90/31
1/3S=-(1/1*4+1/4*7+1/7*10+...+1/28*31)=-(1/1-1/4+1/4-1/7+1/7-1/10+...+1/28-1/31)=-(1/1-1/31)=-30/31
=>S=(-30/31):1/3=-90/31
a) (2x + 1)(3x - 2) = (5x - 8)(2x + 1)
<=> 6x2 - x - 2 = 10x2 - 11x - 8
<=> 6x2 - 10x2 - x + 11x -2 + 8 = 0
<=> -4x2 + 10x + 6 = 0
<=> -2 (2x2 - 5x - 3) = 0
<=> 2x2 - 5x - 3 = 0
<=> 2x2 - 6x + x - 3 = 0
<=> x (2x + 1) - 3 (2x + 1) = 0
<=> (x - 3) (2x + 1) = 0
* x - 3 = 0 => x = 3
* 2x + 1 = 0 => x = -1/2
S = {-1/2; 3}
b) 4x2 – 1 = (2x +1)(3x -5)
<=> 4x2 – 1 - (2x +1)(3x -5) = 0
<=> (2x - 1) (2x + 1) - (2x + 1)(3x - 5) = 0
<=> (2x + 1) (2x - 1 - 3x + 5) = 0
<=> (2x + 1) (-x + 4) = 0
* 2x + 1 = 0 <=> x = -1/2
* -x + 4 = 0 <=> x = 4
S = {-1/2; 4}
c) (x + 1)2 = 4(x2 – 2x + 1)
<=> (x + 1)2 - 4(x2 – 2x + 1) = 0
<=> (x + 1)2 - 4(x2 – 1)2 = 0
* (x + 1)2 = 0 <=> x = -1
* 4(x2 - 1)2 = 0 <=> x = 1 và x = -1
S = {-1; 1}
d) 2x3 + 5x2 – 3x = 0
<=> x (2x2 + 5x - 3) = 0
<=> x (2x2 + 6x - x - 3) = 0
<=> x [x(2x - 1) + 3 (2x - 1)] = 0
<=> x (2x - 1) (x + 3) = 0
* x = 0
* 2x - 1 = 0 <=> x = 1/2
* x + 3 = 0 <=> x = -3
S = { -3; 0; 1/2}
\(\frac{1}{x^2+5x+4}+\frac{1}{x^2+11x+28}+\frac{1}{x^2+17x+70}=\frac{3}{4x-2}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+10\right)}=\frac{3}{4x-2}\)
\(\Leftrightarrow3x^2+21x+36=0\)
\(\Leftrightarrow x=-3\)
A = \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
B = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
\(A=3\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+.....+\frac{3}{55\cdot58}\right)\)
\(A=3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{55}-\frac{1}{58}\right)\)
\(A=3\left(1-\frac{1}{58}\right)\)
\(A=3-\frac{1}{174}< 3< \frac{10}{3}\)
câu 2: \(S=\frac{25^{28^{ }}+25^{24}+...+25^2+25^2+1}{25^{28}.25^2+25^{24}.25^4+...+25^2+1}\)
rút gọn ta được
\(S=\frac{1}{25^4+1}\)
Giải Phương Trình Sau (Nhớ ghi cách làm nha mình k đúng cho)
bài 1+2: phân tích mẫu thành nhân tử r` áp dụng
1/ab=1/a-1/b
bài 3+4: quy đồng rút gọn blah...
Mọi người hướng dẫn mình làm bài này với
\(S=\frac{3^2}{4}-\frac{3^2}{4.7}-\frac{3^2}{7.10}-...-\frac{3^2}{28.31}\)
\(S=\frac{3^2}{4}-\left(\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{28.31}\right)\)
\(S=\frac{9}{4}-3.\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{28.31}\right)\)
\(S=\frac{9}{4}-3.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{28}-\frac{1}{31}\right)\)
\(S=\frac{9}{4}-3.\left(1-\frac{1}{31}\right)\)
\(S=\frac{9}{4}-3.\frac{30}{31}=\frac{9}{4}-\frac{90}{31}=\frac{-81}{124}\)