thực hiện phép tính : 3 phần 15 + 3 phần 35 + 3 phần 63 + ...+ 3 phần 2499
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{3}{5}-\dfrac{3}{5}.\dfrac{2}{3}=\dfrac{3}{5}-\left(\dfrac{3}{5}.\dfrac{2}{3}\right)=\dfrac{3}{5}-\dfrac{2}{5}=\dfrac{1}{5}\)
b) \(\dfrac{-7}{9}.\dfrac{11}{15}-\dfrac{4}{15}.\dfrac{-7}{9}-\dfrac{7}{9}=\dfrac{-7}{9}.\left(\dfrac{11}{15}-\dfrac{4}{15}\right)-\dfrac{7}{9}=\dfrac{-7}{9}.\dfrac{7}{15}-\dfrac{7}{9}=-\dfrac{49}{135}-\dfrac{7}{9}=-\dfrac{154}{135}\)
d) \(3\dfrac{1}{7}-\left(4\dfrac{1}{2}+5\dfrac{3}{7}\right)=\dfrac{22}{7}-\left(\dfrac{9}{2}+\dfrac{38}{7}\right)=\dfrac{22}{7}-\left(\dfrac{63}{14}+\dfrac{76}{14}\right)=\dfrac{22}{7}-\dfrac{139}{14}=\dfrac{44}{14}-\dfrac{139}{14}=-\dfrac{95}{14}\)
1/3+1/15+1/35+1/63+1/99+1/143+1/195
=1/1*3+1/3*5+1/5*7+1/7*9+1/9*11+1/11*13+1/13*15
suy ra 2(1/1*3+1/3*5+1/5*7+1/7*9+1/9*11+1/11*13+1/13*15)
=2/1*3+2/3*5+2/5*7+2/7*9+2/9*11+2/11*13+2/13*15
=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13+1/13-1/15
=1-1/15
=14/15
a=14/15 chia 2=7/15
a) =8 phần 27 ×( 7 phần 4 - 3 phần 8 + 1 phần 2)
= 8 phần 27 × ( 14 phần 8 - 3 phần 8 + 4 phần 8)
= 8 phần 27 × 15 phần 8
= 5 phần 9
b) = 5 phần 18 × ( 2 phần 5 - 1 phần 3 + 5 phần 6)
= 5 phần 18 × ( 12 phần 30 - 10 phần 30 + 25 phần 30)
= 5 phần 18 × 27 phần 30
= 5 phần 18 × 9 phần 10
= 1 phần 4
c) =( 29 phần 10 - 3 phần 10 + 1 phần 3) ÷ 8 phần 15
=( 87 phần 30 - 9 phần 10 + 10 phần 30) ÷ 8 phần 15
= 88 phần 30 × 15 phần 8
= 44 phần 15 × 15 phần 8
= 44 phần 8
= 11 phần 2
d) = 238 ÷ ( 1 phần 2 + 7 phần 4 - 1 phần 4)
= 238 ÷ ( 2 phần 4 + 7 phần 4 - 1 phần 4)
= 238 ÷ 8 phần 4
= 238 × 4 phần 8
= 238 × 1 phần 2
= 119
\(\dfrac{2}{3}-4\left(\dfrac{1}{2}+\dfrac{3}{4}\right)\\ =\dfrac{2}{3}-4.\dfrac{2+3}{4}\\ =\dfrac{2}{3}-4.\dfrac{5}{4}\\ =\dfrac{2}{3}-5\\ =\dfrac{2-15}{3}\\ =\dfrac{-13}{3}\)
`a)2/3-4(1/2+3/4)`
`=2/3-4*1/2-4*3/4`
`=2/3-2-3`
`=2/3-5`
`=2/3-15/3`
`=-13/3`
\(M=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(M=\frac{1}{2}\left(1-\frac{1}{51}\right)\)
M=\(\frac{1}{2}.\frac{50}{51}=\frac{25}{51}\)
\(M=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
\(M=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(M=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(M=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{51}\right)\)
\(M=\frac{1}{2}.\frac{50}{51}\)
\(M=\frac{25}{51}\)
\(\frac{7}{8}\div\left(\frac{14}{3}+\frac{14}{4}\right)+\frac{10}{14}\)
\(=\frac{7}{8}\div\left(\frac{56}{12}+\frac{52}{12}\right)+\frac{10}{14}\)
\(=\frac{7}{8}\div\frac{108}{12}+\frac{10}{14}\)
\(=\frac{7}{8}\div9+\frac{5}{7}\)
\(=\frac{7}{8}\times\frac{1}{9}+\frac{5}{7}\)
\(=\frac{7}{72}+\frac{5}{7}\)
\(=\frac{49}{504}+\frac{360}{504}\)
\(=\frac{409}{504}\)
\(\frac{30}{42}\div\left(\frac{5}{7}-\frac{5}{21}\right)+\frac{6}{8}\)
\(=\frac{6}{7}\div\left(\frac{15}{21}-\frac{5}{21}\right)+\frac{3}{4}\)
\(=\frac{6}{7}\div\frac{10}{21}+\frac{3}{4}\)
\(=\frac{6}{7}\times\frac{21}{10}+\frac{3}{4}\)
\(=\frac{126}{70}+\frac{3}{4}\)
\(=\frac{504}{280}+\frac{210}{280}\)
\(=\frac{714}{280}\)
\(\left(6-\frac{14}{15}\right).\frac{50}{38}-\frac{8}{18}\)
\(=\left(\frac{90}{15}-\frac{14}{15}\right).\frac{25}{19}-\frac{4}{9}\)
\(=\frac{76}{15}.\frac{25}{19}-\frac{4}{9}\)
\(=\frac{76.25}{15.19}-\frac{4}{9}\)
\(=\frac{19.2.2.5.5}{3.5.19}-\frac{4}{9}\)
\(=\frac{20}{3}-\frac{4}{9}\)
\(=\frac{60}{9}-\frac{4}{9}\)
\(=\frac{56}{9}\)
\(\frac{4}{6}+\frac{5}{21}.\left(\frac{4}{5}-\frac{2}{6}\right)\)
\(=\frac{2}{3}+\frac{5}{21}.\left(\frac{24}{30}-\frac{10}{30}\right)\)
\(=\frac{2}{3}+\frac{5}{21}.\frac{14}{30}\)
\(=\frac{2}{3}+\frac{70}{630}\)
\(=\frac{420}{630}+\frac{70}{630}\)
\(=\frac{490}{630}\)
\(=\frac{7}{9}\)
\(\dfrac{3}{15}\) + \(\dfrac{3}{35}\) + \(\dfrac{3}{63}\)+......+\(\dfrac{3}{2499}\)
= \(\dfrac{3}{3.5}\) + \(\dfrac{3}{5.7}\) + \(\dfrac{3}{7.9}\)+....+\(\dfrac{3}{49.51}\)
= \(\dfrac{3}{2}\). ( \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + \(\dfrac{2}{7.9}\)+.....+ \(\dfrac{2}{49.51}\))
= \(\dfrac{3}{2}\).( \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{49}-\dfrac{1}{51}\))
= \(\dfrac{3}{2}\) . ( \(\dfrac{1}{3}\) - \(\dfrac{1}{51}\))
= \(\dfrac{3}{2}\). \(\dfrac{16}{51}\)
= \(\dfrac{8}{17}\)
315153 + 335353 + 363633+......+3249924993
= 33.53.53 + 35.75.73 + 37.97.93+....+349.5149.513
= 3223. ( 23.53.52 + 25.75.72 + 27.97.92+.....+ 249.5149.512)
= 3223.( 13−15+15−17+....+149−15131−51+51−71+....+491−511)
= 3223 . ( 1331 - 151511)
= 3223. 16515116
= 817178