K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc HMC+góc HNC=180 độ

=>HMCN nội tiếp

b: góc CAD=góc NBC

=>1/2*sđ cung CD=1/2*sđ cung CE

=>CD=CE
c: góc BHM=góc BCN=1/2*sđ cung BA

góc BDH=1/2*sđ cung BA

=>góc BHD=góc BDH

=>ΔBHD cân tại B

a: Xét tứ giác HMCN co

góc HMC+góc HNC=180 đô

=>HMCN là tứ giác nội tiếp

b: góc CBE=1/2*sđ cung CE
góc CAD=1/2*sđ cung CD

mà góc CBE=góc CAD

nên CE=CD

c: góc BHD=góc ACB=1/2*sđ cung AB=góc BDH

=>ΔBHD cân tại B

a: góc HMC+góc HNC=180 độ

=>HMCN nội tiếp

b: góc CED=góc CAD

góc CDE=góc CAE

mà góc CAD=góc CAE(=góc CBD)

nên góc CED=góc CDE

=>CD=CE

9 tháng 5 2021

giúp mình câu b với các bạn ơi

 

a: Xét tứ giác AKIB có

góc AKB=góc AIB=90độ

=>AKIB là tứ giác nội tiếp

b: góc BHD=góc AHE=90 độ-góc HAC=90 độ-1/2*sđ cung CD

góc BDH=90 độ-góc IBD=90 độ-1/2*sđ cung CD

=>góc BHD=góc BDH

=>ΔBHD cân tại B

7 tháng 6 2021

a) đề khúc sau là \(MK.MF=MB.MC\)

Ta có: \(\angle BKC=\angle BFC=90\Rightarrow BKFC\) nội tiếp

\(\Rightarrow\angle MKB=\angle MCF\)

Xét \(\Delta MKB\) và \(\Delta MCF:\) Ta có: \(\left\{{}\begin{matrix}\angle MKB=\angle MCF\\\angle CMFchung\end{matrix}\right.\)

\(\Rightarrow\Delta MKB\sim\Delta MCF\left(g-g\right)\Rightarrow\dfrac{MK}{MC}=\dfrac{MB}{MF}\Rightarrow MK.MF=MB.MC\)

b) Xét \(\Delta MNB\) và \(\Delta MCA:\) Ta có: \(\left\{{}\begin{matrix}\angle MNB=\angle MCA\left(ANBCnt\right)\\\angle CMAchung\end{matrix}\right.\)

\(\Rightarrow\Delta MNB\sim\Delta MCA\left(g-g\right)\Rightarrow\dfrac{MN}{MC}=\dfrac{MB}{MA}\Rightarrow MN.MA=MB.MC\)

mà \(MK.MF=MB.MC\Rightarrow MK.MF=MA.MN\Rightarrow\dfrac{MK}{MA}=\dfrac{MN}{MF}\)

Xét \(\Delta MKN\) và \(\Delta MAF:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{MK}{MA}=\dfrac{MN}{MF}\\\angle AMFchung\end{matrix}\right.\)

\(\Rightarrow\Delta MKN\sim\Delta MAF\left(c-g-c\right)\Rightarrow\angle MNK=\angle MFA\)

\(\Rightarrow ANKF\) nội tiếp \(\Rightarrow\angle AKN=\angle AFN\)undefined

7 tháng 6 2021

thank nha :33333

 

a) Xét tứ giác BNHM có 

\(\widehat{BNH}\) và \(\widehat{BMH}\) là hai góc đối

\(\widehat{BNH}+\widehat{BMH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BNHM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

2 tháng 4 2021

cậu ơi b,c luôn được không cậu

13 tháng 3 2020

Đáp án:

Giải thích các bước giải:

1. Xét tứ giác CEHD có :

CEH = 90 ( BE là đường cao )

CDH = 90 ( AD là đường cao )

⇒ CEH + CDH = 90 + 90 = 180

Mà CEH và CDH là hai góc đối của tứ giác CEHD

⇒ CEHD là tứ giác nội tiếp (đpcm)

2. BE là đường cao ( gt )

⇒ BE ⊥ AB ⇒ BFC = 90

Như vậy E và F cùng nhìn BC dưới một góc 90 ⇒ E và F cùng nằm trên (O) đường kính AB

⇒ 4 điểm B, C, E, F cùng nằm trên một đường tròn (đpcm)

3. Xét ΔAEH và ΔADC có :

AEH = ADC (=90)

A chung

⇒ ΔAEH ~ ΔADC

⇒ AE/AD = AH/AC

⇒ AE.AC = AH.AD

Xét ΔBEC và ΔADC có :

BEC = ADC (=90)

C chung

⇒ ΔBEC ~ ΔADC

⇒ AE/AD = BC/AC

⇒ AD.BC = BE.AC (đpcm)

4. Có : C1 = A1 (cùng phụ góc ABC)

C2 = A1 ( hai góc nối tiếp chắn cung BM )

⇒ C1 = C2 ⇒ CB là tia phân giác HCM

Lại có : CB ⊥ HM

⇒ Δ CHM cân tại C

⇒ CB là đường trung trực của HM

⇒ H và M đối xứng nhau qua BC (đpcm)

5. Có : Bốn điểm B,C,E,F cùng nằm trên một đường tròn ( câu 2 )

⇒ C1 = E1 (hai góc nội tiếp cùng chắn BF) (*)

Có : Tứ giác CEHD nội tiếp (câu 1)

⇒ C1 = E2 (hai góc nội tiếp cùng chắn cung HD ) (**)

Từ (*) và (**) ta suy ra :

E1 = E2

⇒ EB là tia phân giác DEF

Cm tương tự ta được : FC là tia phân giác của DFE

Mà BE và CF cắt nhau tại H

⇒ H là tâm của đường tròn nội tiếp ΔDEF