K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2015

Các ước của a là 1; 2; 22 ; ...; 2m+n-1; 2m+n

Tổng các ước của a là B = 1 + 2 + 22+ ...+ 2m+n-1 + 2m+n

                            => 2B = 2 + 22 + ....+ 2m+n + 2m+n+1

=> 2B - B = 2m+n+1 - 1 => B =  2. 2m+n - 1 = 2a - 1

Vậy ...

11 tháng 10 2021
Để tìm bội của n ( n khác 0 ) ta:....
3 tháng 11 2017

bạn giúp mình tr đi

22 tháng 7 2016

câu 1 :

Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :

Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)

Từ (*) => ab = mnd2 ; [a, b] = mnd

=> (a, b).[a, b] = d.(mnd) = mnd2 = ab

=> ab = (a, b).[a, b] . (**)

22 tháng 7 2016

bài 1=7

3 tháng 12 2016

a

ta có 1 số hoàn hảo = tổng các ước = 2 lần nó

ta có các ước của 28=[1,2,,4,7,14,28]

mà tổng các tích của nó là 1+2+4+7+14+28=56=28x2

nên 28 là số hoàn hảo​​

b

gọi a1,a2,a3,......ak là ước của n

vì n hoàn hảo nên

[n:a1]+[n:a2]+..................+[n:ak]=2n

=[nx[1;a1]+nx[1:a2]+...............+nx[1:ak]=2n

=nx[1;a1+1:a2+1:a3+...............+1:ak]=2n

nên [1;a1+1;a2+1;a3+...............+1:ak]=2

mình chỉ giúp được bạn câu a,b thôi  chứ không giúp được câu c xin lỗi nhé

17 tháng 7 2019

Ta biểu thị 2 số hạng liên tiếp của dãy có dạng:\(\frac{\left(n-1\right)n}{2};\frac{n\left(n+1\right)}{2}\)

\(\frac{\left(n-1\right)n}{2}+\frac{n\left(n+1\right)}{2}\)

\(=\frac{\left(n-1\right)n+n\left(n+1\right)}{2}\)

\(=\frac{n\left(n-1+n+1\right)}{2}\)

\(=\frac{n\times2n}{2}\)

\(=n^2\)

\(\Rightarrow\)Tổng hai số hạng liên tiếp của dãy bao giờ cũng là số chính phương