K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D I R H K J M N O

Gọi M, N lần lượt là chân đường cao hạ từ B,C xuống AC,AB

Ta có \(DH.DA=DB.DC\)(1)

Để chứng minh K là trực tâm tam giác IBC ta chứng minh \(DK.DJ=DB.DC\)hay \(DK.DJ=DH.DA\)

Ta có NC,NA lần lượt là phân giác trong và phân giác ngoài của \(\widehat{MND}\)nên

\(\frac{HK}{HD}=\frac{NK}{ND}=\frac{AK}{AH}\)

\(\Rightarrow AK.HD=AD.HK\)

\(\Leftrightarrow HD\left(AD-DK\right)=AD\left(DK-DH\right)\)

\(\Leftrightarrow2.AD.DH=DK\left(DA+DH\right)\)

\(\Leftrightarrow2.AD.DH=2.DK.DJ\)

\(\Rightarrow AD.DH=DK.DJ\left(2\right)\)

Từ (1) và (2) ta  có\(DK.DJ=DH.DA\)

=> K là trực tâm của tam giác IBC

29 tháng 7 2018

help me

29 tháng 7 2018

(hình ảnh mag tính chất minh họa nên tỉ lệ k đc chính xác)

A B C H Q P M N

a)  Tam giác ABC có QA = QP;  PA = PC

=>  QP là đường trung bình của tam giác ABC

=>  QP // BC

mà AH vuông góc với BC

=>  QP vuông góc với AH   (1)

Gọi N là giao điểm của AH và PQ

Tam giác ABH có: QA = QB;  QN // BH

=>  NA = NH  (2)

Từ (1) và (2) suy ra:  PQ là trung trực của AH

b) Tứ giác MPQH có:  QP // HM

=> MPQH là hình thang  (3)

Tam giác AHB vuông tại H, có HQ là đường trung tuyến

=>  HQ = QB = QA = AB/2

=> tgiac QBH cân tại Q

=>  góc QBH = góc QHB

MP là đường trung bình tgiac ABC

=>  MP // AB

=> góc PMC = góc ABH

=> góc PMC = góc QHB

=> góc PMH = góc QHM   (4)

Từ (3) và (4) suy ra: MPQH là hình thang cân