tìm điều kiện để phân số 45/n+1 rút gọn đc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để 2n+15/n+2 rút gọn được thì 2n+15 chia hết cho n+2
=> 2n+4+11 chia hết n+2
Vì 2n+4 chia hết cho n+2 => 11 chia hết n+2
=> n+2 thuộc ước của 11
=> n+2 thuộc 1;-1;11;-11
=> n thuộc -1;-3;9;-13
Mình làm phần 1. Phần 2 bạn dựa vào đó mà làm.
Để \(\frac{12}{7n+1}\) rút gọn được thì 7n + 1 phải chia hết cho 1 ước số lớn hơn 1 của 12
Ư(12) = { 2 ; 3 ; 4 ; 6 ; 12 }
Để 7n + 1 chia hết cho 2 thì n lẻ;
Để 7n+ 1chia hết cho 4 thì 7n chia 4 dư 3; mà 7 chia 4 dư 3 nên n chia 4 dư 1
Để 7n+1 chia hết cho 3 thì 7n chia 3 dư 2; mà 7 chia 3 dư 1 nên n chia 3 dư 2
Để 7n+1 chia hết cho 6 thì 7n chia 6 dư 5; mà 7 chia 6 dư 1 nên n chia 6 dư 5
Để 7n+1 chia hết cho 12; thì n phải chia hết cho 4 và 3; tức n chia 4 dư 1; chia 3 dư 2; hay chia 12 dư 5 .
Vậy ...
Tớ nghĩ là cộng vì dấu ''+'' nằm dưới dấu ''='' mà, chắc là quên ấn nút ''Shift'' ấy mà!
a ĐKXĐ: x<>0; x<>3
b: Sửa đề; x^2-6x+9/x^2-3x
\(A=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
c: Khi x=5 thì \(A=\dfrac{5-3}{5}=\dfrac{2}{5}\)
a) Giá trị của phân thức được xác định
\(\Leftrightarrow x^2-1\ne0\)
\(\Leftrightarrow x\ne\pm1\)
Vậy để giá trị của phân thức đã cho xác định \(\Leftrightarrow x\ne\pm1\)
b)Ta có:
\(\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{3}{x-1}\)
c) Để phân thức nhận giá trị nguyên dương
\(\Leftrightarrow\frac{3}{x-1}\)có giá trị nguyên dương
\(\Leftrightarrow x-1\)\(\inƯ\left(3\right)=\left\{1;3\right\}\)
x-1 | 1 | 3 |
x | 2 ( Nhận ) | 4 ( Nhận ) |
Vậy với \(x\in\left\{2;4\right\}\)thì giá trị của phân thức có giá trị nguyên dương.
a: ĐKXĐ: x<>1; x<>-1
b: \(A=\dfrac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-4}{x-1}\)
c: Để A là số nguyên thì x-1-3 chia hết cho x-1
=>\(x-1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{2;0;4;-2\right\}\)
Bài 2:
\(\Leftrightarrow3\sqrt{x+5}-2\sqrt{x+5}=7\)
\(\Leftrightarrow\sqrt{x+5}=7\)
=>x+5=25
hay x=18
điều kiện để \(\dfrac{45}{n+1}\) rút gọn được là :
\(\left(n+1\right)\ne0\) và \(45⋮\left(n+1\right)\)
\(\Leftrightarrow x\ne-1\) và \(\left(n+1\right)\inƯ\left(45\right)\)
mà \(Ư\left(45\right)=\left(\pm1;\pm3;\pm5;\pm9;\pm15\right)\)
\(\Leftrightarrow n\in\left(0;-2;2;-4;4;-6;8;-10;14;-16\right)\)
n+1 chia hết cho Ư(45)