Tìm stn n để \(Q=\frac{6n+5}{2n-1}\)nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A nguyên thì 6n + 5 chia hết cho 2n - 1
=> 6n - 3 + 8 chia hết cho 2n - 1
<=> 3.(2n - 1) + 8 chia hết cho 2n - 1
=> 8 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(8) = {-8;-4;-2;-1;1;2;4;8}
Ta có bảng :
2n - 1 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
2n | -7 | -3 | -1 | 0 | 2 | 3 | 5 | 9 |
2n | 0 | 1 |
Ta có : \(A=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{6n-3}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)
Để A nguyên thì : 2n - 1 thuộc Ư(8) = {-8;-4;-2;-1;1;2;4;8}
=> 2n = {-7;-3;-1;0;2;3;5;9}
=> 2n = {0;1}
Để : \(A=\frac{6n-5}{n-1}\in Z\)
Thì 6n - 5 chia hết cho n - 1
<=> 6n - 6 + 1 chia hết cho n - 1
=> 6(n - 1) + 1 chia hết cho n - 1
=> 1 chia hết cho n - 1
=> n - 1 thuộc Ư(1) = {-1;1}
Vậy n = {0;2} .
Để : \(B=\frac{3n+1}{2n-3}\in Z\)
Thì 3n + 1 chia hết cho 2n - 3
=> 6n + 2 chia hết cho 2n - 3
=> 6n - 9 + 11 chia hết cho 2n - 3
=> 3(2n - 3) + 11 chia hết cho 2n - 3
=> 11 chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(11) = {-11;-1;1;11}
=> 2n = {-8;2;4;14}
=> n = {-4;1;2;7}
Vậy n = {-4;1;2;7} .
\(\frac{6n+5}{2n+1}=\frac{6n+3+2}{2n+1}=3+\frac{2}{2n+1}\)
Số hữu tỉ \(\frac{6n+5}{2n+1}\) nguyên \(\Leftrightarrow\) \(\frac{2}{2n+1}\) nguyên
\(\Leftrightarrow2n+1\inƯ\left(2\right)\)
\(\Leftrightarrow2n+1\in\left\{-2;-1;1;2\right\}\)
\(\Leftrightarrow2n\in\left\{-3;-2;0;1\right\}\)
\(\Leftrightarrow n\in\left\{-1;0\right\}\)
6n+52n+1 =6n+3+22n+1 =3+22n+1
Số hữu tỉ 6n+52n+1 nguyên ⇔ 22n+1 nguyên
⇔2n+1∈Ư(2)
⇔2n+1∈{−2;−1;1;2}
⇔2n∈{−3;−2;0;1}
⇔n∈{−1;0}
a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)
\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)
\(\Rightarrow3n-9-3n+12⋮n-4\)
\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)
\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)
\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)
b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)
\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)
\(\Rightarrow6n+5-6n+3⋮2n-1\)
\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)
Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4
Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4
Mà 3. ( n - 4 ) chia hết cho n - 4
3 . ( n - 4 ) + 21 chia hết cho n - 4 <=> 21 chia hết cho n - 4
=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 }
n - 4 = 1 => n = 5
n - 4 = 3 => n = 7
n - 4 = 7 => n = 11
n - 4 = 21 => n = 25
Vậy n = { 5 ; 7 ; 11 ; 25 }
Để B = 6n + 5/2n - 1 là số nguyên thì 6n + 5 chia hết cho 2n - 1
=> 6n - 3 + 8 chia hết cho 2n - 1
=> 3.(2n - 1) + 8 chia hết cho 2n - 1
Vì 3.(2n - 1) chia hết cho 2n - 1 => 8 chia hết cho 2n - 1
Mà 2n - 1 là số lẻ => 2n - 1 thuộc { 1 ; -1}
=> 2n thuộc { 2 ; 0}
=> n thuộc { 1 ; 0}
Vậy n thuộc { 1 ; 0}
Để A có giá trị nguyên thì
6n + 5 chia hết cho 2n - 1
6n - 3 + 8 chia hết cho 2n - 1
3(2n - 1) + 8 chia hết cho 2n - 1
=>8 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(8) = {1 ; -1; 2 ; -2; 4 ; -4; 8; -8}
Mặt khác , để n nguyên thì 2n nguyên
Có nghĩ là một số nào đó trừ 1 và bắt buộc phải là số chẵn để số đó chia hết cho 2
Mà một số trừ 1 mà thành số chẵn thì chỉ có số lẻ
Xét trong tập hợp , ta thấy 1 và -1 lẻ
=> ta có bảng sau :
2n - 1 | 1 | -1 |
n | 1 | 0 |
Đề A đạt giá trị nguyên
=> 3n + 9 chia hết cho n - 4
3n - 12 + 12 + 9 chia hết cho n - 4
3.(n - 4) + 2c1 chia hết cho n - 4
=> 21 chia hết cho n - 4
=> n - 4 thuộc Ư(21) = {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}
Thay n - 4 vào các giá trị trên như
n - 4 = 1
n - 4 = -1
.......
Ta tìm được các giá trị :
n = {5 ; 3 ; 7 ; -1 ; 11 ; -3 ; 25 ; -17}
a) Để A thuộc Z (A nguyên)
=> 3n+9 chia hết cho n-4
hay 3n+9-12+12 chia hết cho n-4 (-12+12=0)
3n-12+9+12 chia hết cho n-4
3n-12+21 chia hết cho n-4
3(n-4)+21 chia hết cho n-4
Vì 3(n-4) luôn chia hết cho n-4 với mọi n thuộc Z=> 21 chia hết cho n-4
mà Ư(21)={21;1;7;3} nên ta có bảng:
n-4 | 21 | 1 | 3 | 7 |
n | 25 (tm) | 5 (tm) | 7 (tm) | 11 (tm) |
Vậy n={25;5;7;11} thì A nguyên.
b)
Để B thuộc Z (B nguyên)
=> 6n+5 chia hết cho 2n-1
hay 6n+5-3+3 chia hết cho 2n-1 (-3+3=0)
6n-3+5+3 chia hết cho 2n-1
6n-3+8 chia hết cho 2n-1
3(2n-1)+8 chia hết cho 2n-1
Vì 3(2n-1) luôn chia hết cho 2n-1 với mọi n thuộc Z=> 8 chia hết cho 2n-1
mà Ư(8)={8;1;2;4} nên ta có bảng:
2n-1 | 8 | 1 | 2 | 4 |
n | 4.5 (ktm) | 1 (tm) | 1.5 (ktm) | 2.5 (ktm) |
Vậy, n=1 thì B nguyên.
Tìm n là số tự nhiên để Q thuộc Z hả