K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2023

cứu

a: n(E)=40

A là biến cố "học sinh được chọn ra là nữ"

n(A)=15

=>P(A)=15/40=3/8

b: biến cố học sinh được chọn ra là nam là biến cố đối của biến cố học sinh được chọn ra là nữ

=>P=1-3/8=5/8

n(E)=40

P=15/40=3/8

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Tập hợp E gồm các kết quả có thể xảy ra đối với số tự nhiên được viết ra là:

E = {Ánh; Châu; Hương; Hoa; Ngân; Bình; Dũng; Hùng; Huy; Việt}

Số phần tử của E là 10

a) Có năm kết quả thuận lợi cho biến cố “Học sinh được chọn ra là học sinh nữ” là: Ánh, Châu, Hương, Hoa, Ngân.

Vì thế, xác suất của biến cố trên là: \(\dfrac{5}{{10}} = \dfrac{1}{2}\)

b) Có năm kết quả thuận lợi cho biến cố “Học sinh được chọn ra là học sinh nam” là: Bình, Dũng, Hùng, Huy, Việt.

Vì thế, xác suất của biến cố trên là: \(\dfrac{5}{{10}} = \dfrac{1}{2}\)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Tập hợp P gồm các kết quả có thể xảy ra đối với học sinh được chọn ra là:

P = {Ánh, Châu, Hương, Hoa, Ngân, Bình, Dũng, Hùng, Huy, Việt}

b) Trong 10 bạn ở Tổ I của lớp 7D, có 5 học sinh nữ là: Ánh, Châu, Hương, Hoa, Ngân.

Vậy có năm kết quả thuận lợi cho biến cố “Học sinh được chọn ra là học sinh nữ” là: Ánh, Châu, Hương, Hoa, Ngân (lấy ra từ tập hợp P = {Ánh, Châu, Hương, Hoa, Ngân, Bình, Dũng, Hùng, Huy, Việt}).

c) Trong 10 bạn ở Tổ I của lớp 7D, có 5 học sinh nam là: Bình, Dũng, Hùng, Huy, Việt.

Vậy có năm kết quả thuận lợi cho biến cố “Học sinh được chọn ra là học sinh nam” là: Bình, Dũng, Hùng, Huy, Việt (lấy ra từ tập hợp P = {Ánh, Châu, Hương, Hoa, Ngân, Bình, Dũng, Hùng, Huy, Việt}).

22 tháng 8 2023

tham khảo

a) Số kết quả thuận lợi cho biến cố A là \(C^3_{17}=680\)

Số kết quả thuận lợi cho biến cố B là \(C^2_{17}.C^1_{15}=2040\)

b)\(A\cup B\)  là biến cố "Có ít nhất 2 học sinh nữ trong 3 học sinh được chọn"Số kết quả thuận lợi cho biến cố \(A\cup B\) là:\(680+2040=2720\)
30 tháng 5 2019

12 tháng 3 2019

Đáp án B

Gọi x,y lần lượt là số học sinh nữ ở nhóm I và nhóm II. Khi đó số học sinh nam ở nhóm II là  25 − 9 + x − y = 16 − x − y   . Điều kiện để mỗi nhóm đều có học sinh nam và nữ là x ≥ 1, y ≥ 1,16 − x − y ≥ 1 ;    x , y ∈ ℕ .

Xác suất để chọn ra được hai học sinh nam bằng  C 9 1 C 16 − x − y 1 C 9 + x 1 C 16 − x 1 = 0,54

⇔ 9 16 − x − y 9 + x 16 − x = 0,54 ⇔ 144 − 9 x − 9 y 144 + 7 x − x 2 = 0,54 ⇔ y = 184 25 − 71 50 x + 3 50 x 2

Ta có hệ điều kiện sau  x ≥ 1 184 25 − 71 50 x + 3 50 x 2 ≥ 1 16 − x − 184 25 − 71 50 x + 3 50 x 2 ≥ 1 x ∈ ℕ

⇔ x ≥ 1 3 50 x 2 − 71 50 x + 159 25 ≥ 0 − 3 50 x 2 + 21 50 x + 191 25 ≥ 0 x ∈ ℕ ⇔ x ≥ 1 x ≥ 53 3 x ≤ 6 21 − 5 201 6 ≤ x ≤ 21 + 5 201 6 x ∈ ℕ ⇔ 1 ≤ x ≤ 6 x ∈ ℕ

Ta có bảng các giá trị của :

Vậy ta tìm được hai cặp nghiệm nguyên x ; y  thỏa mãn điều kiện là   1 ; 6 và  6 ; 1   .

Xác suất để chọn ra hai học sinh nữ là C x 1 C y 1 C 9 + x 1 C 16 − x 1 = x y 9 + x 16 − x .

Nếu x ; y ∈ 1 ; 6 , 6 ; 1  thì xác suất này bằng 1 25 = 0,04 .

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

\(\Omega \) là tập tất cả 6 học sinh trong 12 học sinh. Vậy \(n\left( \Omega  \right) = C_{12}^6 = 924\).

Gọi C là biến cố: “Có 3 học sinh nam và 3 học sinh nữ”. Có \(C_7^3\) cách chọn chọn 3 học sinh nam và \(C_5^3\) cách chọn 3 học sinh nữ. Theo quy tắc nhân, ta có \(C_7^3.C_5^3 = 350\) cách chọn 3 học sinh nam và 3 học sinh nữ tức là \(n\left( C \right) = 350\).Vậy \(P\left( C \right) = \frac{{350}}{{924}} \approx 0,3788\).

25 tháng 4 2018

Đáp án C.

Phương pháp: 

Xác suất của biến cố A:

P A = n A n Ω .  

Cách giải:                                            

Số phần tử của không gian mẫu:

n Ω = C 9 3  

A: “Số học sinh nam nhiều hơn số học sinh nữ”

Ta có 2 trường hợp:  

+) Chọn ra 2 nam, 1 nữ:

+) Chọn ra 3 nam, 0 nữ.

⇒ n A = C 5 2 C 4 1 + C 5 3  

⇒ P A = n A n Ω = C 5 2 C 4 1 + C 5 3 C 9 3 = 25 42