Tìm các số tự nhiên a,b thỏa mãn điều kiện
11/17<a/b<23/29 và 8b-9a=31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vào link này nhé:https://olm.vn/hoi-dap/question/116944.html
Tìm số tự nhiên a,b thỏa mãn điều kiện:
\(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\) và 8b-9a=31
Từ \(8b-9a=31\Leftrightarrow8b=9a+31\)
Ta có: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\Rightarrow\left\{{}\begin{matrix}17a>11b\\29a< 23b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}17.8a>11.8b\\29.8a< 23.8b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}136a>11\left(9a+31\right)\\232a< 23\left(9a+31\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}136a>99a+341\\232a< 207a+713\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}37a>341\\25a< 713\end{matrix}\right.\)
\(\Rightarrow\dfrac{341}{37}< a< \dfrac{713}{25}\)
Mà a là số tự nhiên \(\Rightarrow9< a< 29\) (1)
Lại có \(8b-9a=31\Leftrightarrow8\left(b-a\right)=a+31\)
\(\Rightarrow a+31\) chia hết cho 8 \(\Rightarrow a\) chia 8 dư 1 (2)
(1);(2) \(\Rightarrow\left[{}\begin{matrix}a=17\\a=25\end{matrix}\right.\)
Với \(a=17\Rightarrow b=23\)
Với \(a=25\Rightarrow b=32\)
` 16<a<b`
`20>c>b`
`=>16<a<b<b<20/
`=> a= 17`
`b = 18`
`c = 19`
Giải:
Ta biết: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\) và \(8b-9a=31\) \(\left(a;b\in N\right)\)
Theo đề bài: \(8b-9a=31\)
\(\Rightarrow b=\dfrac{31+9a}{8}=\dfrac{32-1+8a+a}{8}=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\in N\)
\(\Leftrightarrow\dfrac{a-1}{8}\in N\)
\(\Leftrightarrow\left(a-1\right)⋮8\)
\(\Leftrightarrow a=8k+1\left(k\in N\right)\)
Khi đó:
\(b=\dfrac{31+9.\left(8k+1\right)}{8}=9k+5\)
\(\Rightarrow\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\)
\(\Leftrightarrow\left\{{}\begin{matrix}11.\left(9k+5\right)< 17.\left(8k+1\right)\Leftrightarrow k>1\\29.\left(8k+1\right)< 23.\left(9k+5\right)\Leftrightarrow k< 4\end{matrix}\right.\)
\(\Rightarrow1< k< 4\)
\(\Rightarrow k\in\left\{2;3\right\}\)
Với \(\left[{}\begin{matrix}k=2\Rightarrow\left\{{}\begin{matrix}a=17\\b=23\end{matrix}\right.\\k=3\Rightarrow\left\{{}\begin{matrix}a=25\\b=32\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(17;23\right);\left(25;32\right)\)
Giải:
Ta biết: 1117<��<23291711<ba<2923 và 8�−9�=318b−9a=31 (�;�∈�)(a;b∈N)
Theo đề bài: 8�−9�=318b−9a=31
⇒�=31+9�8=32−1+8�+�8=[(4+�)+�−18]∈�⇒b=831+9a=832−1+8a+a=[(4+a)+8a−1]∈N
⇔�−18∈�⇔8a−1∈N
⇔(�−1)⋮8⇔(a−1)⋮8
⇔�=8�+1(�∈�)⇔a=8k+1(k∈N)
Khi đó:
�=31+9.(8�+1)8=9�+5b=831+9.(8k+1)=9k+5
⇒1117<8�+19�+5<2329⇒1711<9k+58k+1<2923
⇔{11.(9�+5)<17.(8�+1)⇔�>129.(8�+1)<23.(9�+5)⇔�<4⇔{11.(9k+5)<17.(8k+1)⇔k>129.(8k+1)<23.(9k+5)⇔k<4
⇒1<�<4⇒1<k<4
⇒�∈{2;3}⇒k∈{2;3}
Với [�=2⇒{�=17�=23�=3⇒{�=25�=32⎣⎡k=2⇒{a=17b=23k=3⇒{a=25b=32
Vậy (�;�)=(17;23);(25;32)(a;b)=(17;23);(25;32)
dài lắm bạn ạ, bao giờ có thời gian mình sẽ giải