cho tam giác ABC có ba góc nhọn (AB∠AC) nội tiếp đường tròn (o) vẽ tiếp tuyến tại A của đường tròn(o) cắt đường thẳng BC tại S tia phân giác của góc BAC cắt BC tại K và cắt đường tròn (o) tại E ,OE cắt dây BC tại I a/ chứng minh:SA2 =SB*SC b/chứng minh:OE⊥BC tại I d/vẽ tiếp tuyến SD của đường tròn (o) D là tiếp điểm D khác A . chứng minh:tứ giác SAOD nội tiếp được đường tròn và I
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc OAD+góc OMD=180 độ
=>OADM nội tiếp
b: ΔOBC cân tại O
mà ON là đường cao
nên ONlà trung trực của BC
=>sđ cung NB=sd cung NC
=>góc BAN=góc CAN
=>AN là phân giác của góc BAC
góc DAI=1/2*sđ cung AN
góc DIA=1/2(sđ cung AB+sđ cung NC)
=1/2(sđ cung AB+sđ cung NB)
=1/2*sđ cung AN
=>góc DAI=góc DIA
=>ΔDAI cân tại D
Hai góc này không bằng nhau thì chứng minh làm sao được em?
Em thử sử dụng tính năng đo góc của geogebra là biết.
ta có: \(MC^2=MI.MA\)
\(\Rightarrow MD^2=MI.MA\) ( do tam giác MCD cân tại M)
\(\Rightarrow\dfrac{MD}{MA}=\dfrac{ MI}{MD}\)
Xét tam giác MDI và tam giác MAD có :
\(\left\{{}\begin{matrix}DMAgócchung\\\dfrac{MD}{MA}=\dfrac{MI}{MD}\end{matrix}\right.\)
=> tam giác MDI đồng dạng tam giác MAD ( g -c)
=> góc MDI = góc MAD (1)
tứ giác DNIC nội tiếp => góc MDI = góc MCI (2)
từ 1 và 2 suy ra :góc NCI = góc HAD
mà góc MAD = góc KCI
=> góc NCI = góc KCI
vậy 3 điểm C ; K ; N thẳng hàng ( đpcm)