K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4 Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)  Câu 4: Cho tam...
Đọc tiếp

Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt

Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4

Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\) 

Câu 4: Cho tam giác ABC. Gọi D,I lần lượt là các điểm xác định bởi \(3\overrightarrow{BD}-\overrightarrow{BC}=\overrightarrow{0}\) và \(\overrightarrow{IA}+\overrightarrow{ID}=\overrightarrow{0}\). Gọi M là điểm thỏa mãn \(\overrightarrow{AM}=x\overrightarrow{AC}\) (x∈R)

a) Biểu thị \(\overrightarrow{BI}\) theo \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\)

b) Tìm x để ba điểm B,I,M thẳng hàng

4
NV
14 tháng 12 2020

1.

Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)

Pt trở thành:

\(4t=t^2-5+2m-1\)

\(\Leftrightarrow t^2-4t+2m-6=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)

NV
14 tháng 12 2020

2.

Để pt đã cho có 2 nghiệm:

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)

Khi đó:

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)

\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)

15 tháng 6 2021

giúp mình với , mình cảm ơn ạ ! 

16 tháng 6 2021

\(pt:x^2-2mx+m-4=0\left(1\right)\)

\(\Delta'=\left(-m\right)^2-\left(m-4\right)=m^2-m+4=m^2-2.\dfrac{1}{2}m+\dfrac{1}{4}-\dfrac{1}{4}+4\)

\(=\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{6}>0\left(\forall m\right)\)

=> \(pt\left(1\right)\) luôn có 2 nghiệm phân biệt x1,x2 \(\forall m\)

\(Theo\) \(\)Vi ét\(=>\left\{{}\begin{matrix}x1+x2=2m\left(1\right)\\x1x2=m-4\left(2\right)\end{matrix}\right.\)

từ(1)

với \(x1x2=m-4=>m=x1x2+4\)

thay \(m=x1x2+4\) vào (1)\(\)\(=>x1+x2=2\left(x1x2+4\right)\)

\(< =>x1+x2=2x1x2+8\)

\(< =>x1+x2-2x1x2=8\)

\(< =>2x1+2x2-4x1x2=16\)

\(=>2x1\left(1-2x2\right)-\left(1-2x2\right)=15\)

\(< =>\left(2x1-1\right)\left(1-2x2\right)=16\)(3)

để (3) nguyên \(< =>\left(2x1-1\right)\left(1-2x2\right)\inƯ\left(16\right)=\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)

đến đây bạn tự lập bảng giá trị để tìm x1,x2 rồi từ đó thay thế x1,x2 vào(2) để tìm m nhé (mik ko làm nữa dài lắm)

 

 

 

 

 

 

 

 

 

8 tháng 5 2021

phương trình có nghiệm khi:

\(\Delta\)\(\ge\)0<=>[-(2m+1)]^2-4.(m^2-1)\(\ge\)0

<=>(2m+2)^2-4m^2+4\(\ge\)0

<=>4m^2+8m+4-4m^2+4\(\ge\)0

<=>8m+8\(\ge\)0

<=>8(m+1)\(\ge\)0

<=>m\(\ge\)-1

vậy m\(\ge\)-1 thì phương trình có nghiệm

8 tháng 5 2021

△≥0⇔(2m+2)^2-4(m^2-1)≥0

⇔4m^2+8m+4-4m^2+4≥0

⇔8m+8≥0

⇔m≥-1

Vậy phương trình có nghiệm khi m≥-1

NV
5 tháng 1 2021

\(\Leftrightarrow\dfrac{3^x+3}{\sqrt{9^x+1}}=m\)

Đặt \(3^x=t>0\)

\(\Rightarrow\dfrac{t+3}{\sqrt{t^2+1}}=m\)

Xét hàm \(f\left(t\right)=\dfrac{t+3}{\sqrt{t^2+1}}\) khi \(t>0\) rồi lập BBT, từ đó xác định ra m có vẻ khá đơn giản

NV
9 tháng 1 2023

Xét với \(x>1\)

\(\sqrt{2x+m}=x-1\)

\(\Leftrightarrow2x+m=x^2-2x+1\)

\(\Leftrightarrow x^2-4x+1=m\)

Xét hàm \(f\left(x\right)=x^2-4x+1\) với \(x>1\)

\(-\dfrac{b}{2a}=2\) ; \(f\left(1\right)=-2\) ; \(f\left(2\right)=-3\)

\(\Rightarrow\) Pt có 2 nghiệm pb lớn hơn 1 khi \(-3< m< -2\)

9 tháng 1 2023

thầy giúp em với ạ , em cảm ơn

https://hoc24.vn/cau-hoi/1-phep-thu-co-khong-gian-mau-omega-co-10-phan-tu-co-bao-nhieu-bien-co-co-xac-suat-in01a1023-b1022-c512-d256tre-con-choi-tro-chieu-bong-chung-khoet-1-hinh-chu-nhat-len-bia-roi-de.7474045228868

 

NV
9 tháng 1 2023

Đặt \(\sqrt{1-x^2}=t\Rightarrow t\in\left[0;1\right]\)

Pt trở thành:

\(1-t^2+t=m\)

Xét hàm \(f\left(t\right)=-t^2+t+1\) trên \(\left[0;1\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[0;1\right]\)

\(f\left(0\right)=1\) ; \(f\left(1\right)=1\)\(f\left(\dfrac{1}{2}\right)=\dfrac{5}{4}\)

\(\Rightarrow1\le f\left(t\right)\le\dfrac{5}{4}\Rightarrow\) pt có nghiệm khi \(m\in\left[1;\dfrac{5}{4}\right]\)

9 tháng 1 2023

Anh ơi! Chỗ t thuộc [0;1] em chưa hiểu ạ 

NV
8 tháng 4 2022

Đặt \(-x^2+2x=t\Rightarrow0\le t\le1\)

\(\Rightarrow-t^2+t-3+m=0\)

\(\Leftrightarrow t^2-t+3=m\)

Xét hàm \(f\left(t\right)=t^2-t+3\) trên \(\left[0;1\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[0;1\right]\)

\(f\left(0\right)=3\) ; \(f\left(1\right)=3\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{11}{4}\)

\(\Rightarrow\dfrac{11}{4}\le f\left(t\right)\le3\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(\dfrac{11}{4}\le m\le3\)