K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

Có: 2008 - 1999 = 9

Mà hiệu 2 số chính phương bằng 9 có số 16 và 25

Vậy n = -1983

CÁCH NÀY MÒ LẮM. KHI NÀO CÓ CÁCH HAY HƠN MÌNH SẼ BẢO

11 tháng 6 2021

a) Đặt A = 20184n + 20194n + 20204n

= (20184)n + (20194)n + (20204)n

= (....6)n + (....1)n + (....0)n

= (...6) + (...1) + (...0) = (....7) 

=> A không là số chính phương

b) Đặt 1995 + n = a2 (1) 

2014 + n = b2 (2)

a;b \(\inℤ\)

=> (2004 + n) - (1995 + n) = b2 - a2

=> b2 - a2 = 9

=> b2 - ab + ab - a2 = 9

=> b(b - a) + a(b - a) = 9

=> (b + a)(b - a) = 9

Lập bảng xét các trường hợp

b - a19-1-93-3
b + a91-9-1-33
a-444-4-33
b55-5-500

Từ a;b tìm được thay vào (1)(2) ta được 

n = -1979 ; n = -2014 ; 

Do  \(1955+n,2014+n\) là số chính phương

\(\Rightarrow\left\{{}\begin{matrix}1955+n=a^2\\2014+n=b^2\end{matrix}\right.\) \(\left(a,b\in Z\right)\)

\(\Rightarrow b^2-a^2=59\)

\(\Rightarrow\left(b-a\right)\left(b+a\right)=59\).

Mà \(a,b\in Z\) nên ta có các TH sau :

\(b-a\)\(-1\)\(1\)\(-59\)\(59\)
\(a+b\)\(-59\)\(59\)\(-1\)\(1\)
\(a\)\(29\)\(-29\)\(-29\)\(29\)
\(b\)\(-30\)\(30\)\(-30\)\(30\)
\(n\)\(-1114\)\(-1114\)\(-1114\)\(-1114\)

Thử lại ta chọn \(n=-1114\)

Vậy : \(n=-1114\) thỏa mãn đề.

 

DD
11 tháng 6 2021

  

\(n+1995=a^2,n+2014=b^2\)

Trừ vế theo vế ta được: 

\(b^2-a^2=59\)

\(\Leftrightarrow\left(b-a\right)\left(b+a\right)=59\)

Do \(59\)là số nguyên tố và \(b>a\)nên ta chỉ có một trường hợp: 

\(\hept{\begin{cases}b-a=1\\b+a=59\end{cases}}\Leftrightarrow\hept{\begin{cases}b=30\\a=29\end{cases}}\)

Khi đó \(n=-1114\)

Sai rồi cô ạ. n = -1154 chứ không phải n = -1114.

23 tháng 10 2023

#include <bits/stdc++.h>

using namespace std;
long long a[1000006];
long long n;
int main()
{
    for(int i=1;i<=1000006;i++){
        a[i]=i*i;
    }
    cin>>n;
    for(int i=1;i<=n;i++){
        if(a[i]%n==0){cout<<a[i]/n;break;}
    }
    return 0;
}

26 tháng 8 2024

pịa

 

2 tháng 11 2023

Bạn chỉ cần cho \(n\) lẻ thì \(p^{n+1}\) chính phương rồi nhé.

2 tháng 4 2019

n+1930, n+2539 là số chính phương  

Khi đó sẽ tồn tại số nguyên a, b sao cho:

\(n+1930=a^2,n+2539=b^2\)

Ta có: \(b^2-a^2=\left(n+2539\right)-\left(n+1930\right)=609\)

=> \(\left(b-a\right)\left(b+a\right)=1.609=609.1=-1.\left(-609\right)=\left(-609\right).\left(-1\right)\)

\(=3.203=203.3=-3.\left(-203\right)=\left(-203\right).\left(-3\right)\)

Vì a, b nguyên nên a-b và a+b nguyên 

Em kẻ bảng làm tiếp nhé