cho đa thức p(x)=x^2012-2011x^2011-2011x^2010-........-2011x^2x+1.tinh p(2012)
giải hộ mk vs ,mai mk hok rùi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
x = 2012
x - 1 = 2011
P(x) = x2012 - 2011x2011 - 2011x2010 - .... - 2011x2 - 2011x - 1
P(x) = x2012 - (x - 1)x2011 - (x - 1)x2010 - ..... - (x - 1)x2 - (x - 1)x - 1
P(x) = x2012 - x2012 + x2011 - x2011 + x2010 - ...... - x3 + x2 - x2 + x - 1
P(x) = x - 1
P(2012) = 2012 - 1 = 2011
\(x+2x+3x+...+2011x=2012.1013\)
\(\dfrac{2011\left(2011+1\right)}{2}x=2012.2013\)
\(x=2012.2013.\dfrac{2}{2011.2012}\)
\(x=\dfrac{4026}{2011}\)
1 (3y - 0,8 ) : y + 14,5 = 15
( 3y - 0,8 ) : y = 0,5
3y : y - 0,8 : y = 0,5
3 - 0,8 : y = 0,5
0,8 : y = 2,5
y = 0,8 : 2,5
y = 0,32
Ta có :
Tử số = 2012 x 14 + 1997 + 2010 x 2011
= ( 2011 + 1 ) x 14 + 1997 + 2010 x 2011
= 2011 x 14 + 1 x 14 + 1997 + 2010 x 2011
= 2011 x 14 + 14 + 1997 + 2010 x 2011
= ( 2011 x 14 ) + ( 14 + 1997 ) + ( 2010 x 2011 )
= 2011 x 14 + 2011 + 2010 x 2011
= 2011 x ( 14 + 1 + 2010 )
= 2011 x 2025
Mẫu số = 2011 x 5 + 2011 x 1008 + 1012 x 2011
= 2011 x ( 5 + 1008 + 1012 )
= 2011 x 2025
=> \(A=\frac{2011\times2025}{2011\times2025}=1\)
Với x = 2010 => 2011 = x+1
Khi đó: f(x) = x^25 - (x+1)x^24+(x+1)x^23 - (x+1)x^22 + ... + (x+1)x - 1
= x^25 - x^25 - x^24 + x^24 - x^23 - x^23 - x^22 +...+ x^2 + x - 1
= x - 1
= 2010 - 1 (vì x = 2010)
= 1999
Vậy f(2010) = 1999 tại x = 2010
ủng hộ mk nha!!!
x4+2012x2+2011x+2012
=(x4-x)+(2012x2+2012x+2012)
=x(x3-1)+2012(x2+x+1)
=x(x-1) (x2+x+1) + 2012 (x2+x+1)
=(x2+x+1) [x(x-1)+2012]
=(x2+x+1) (x2-x+2012)
Cứ 1 số hạng lại kèm theo 1x
Số số hạng từ 1 đến 2011 là:
( 2011 - 1 ) : 1 + 1 = 2011 ( số hạng )
Do đó có 2011x
Ta có:\(x+2x+3x+4x+...+2011x=2012.2013\)
\(2011x=2012.2013\)
\(x=\frac{2012.2013}{2011}\)
1) \(\left(x^2+3x+1\right)^2-1=\left(x^2+3x\right)\left(x^2+3x+2\right)=x\left(x+3\right)\left[\left(x^2+2x\right)+\left(x+2\right)\right]\)
\(=x\left(x+3\right)\left[x\left(x+2\right)+\left(x+2\right)\right]=x\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
2) \(x^4+2012x^2+2011x+2012\)
\(=\left(x^4-x\right)+\left(2012x^2+2012x+2012\right)\)
\(=x\left(x^3-1\right)+2012\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2012\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2012\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+2012\right)\)