Chứng minh rằng: -0,7 (4343-1717) có giá trị là một số nguyên.
Cần gấp. Giúp mk với. Thanks nhìu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(43^{43}-17^{17}\)
\(=43^{40}.43^3-17^{16}.17\)
\(=\overline{.....1}.\overline{.....7}-\overline{.....1}.7\)
\(=\overline{.....7}-\overline{.....7}\)
\(=\overline{.....0⋮}10\)
\(\Rightarrow dpcm\)
Hazz suy nghĩ nãy h ko được cách nào -_- làm tạm đi
* Nếu x và y chẵn :
\(\Rightarrow\)\(\hept{\begin{cases}x=2n\\y=2m\end{cases}}\) \(\left(m,n\inℤ\right)\)
Ta có :
\(A=\left|2n+2m-1000\right|.\left(2n-2m-1017\right)\)
\(A=2\left|n+m-1000\right|.\left(2n-2m-1017\right)⋮2\)
Vậy A là số chẵn
* Nếu x chẵn và y lẻ :
\(\Rightarrow\)\(\hept{\begin{cases}x=2n\\y=2m+1\end{cases}}\) \(\left(m,n\inℤ\right)\)
Ta có :
\(A=\left|2n+2m+1-1000\right|.\left(2n-2m-1-1017\right)\)
\(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1018\right]\)
Lại có :
\(2\left(n+m\right)\) chẵn \(\Rightarrow\)\(\left|2\left(n+m\right)-999\right|\) lẻ \(\left(1\right)\) ( chẵn trừ lẻ = lẻ )
\(2\left(n-m\right)\) chẵn \(\Rightarrow\)\(2\left(n-m\right)-1018\) chẵn \(\left(2\right)\) ( chẵn trừ chẵn = chẵn )
Từ (1) và (2) suy ra \(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1018\right]\) chẵn ( lẻ nhân chẵn = chẵn )
Vậy A là số chẵn
* Nếu x lẻ và y chẵn :
\(\Rightarrow\)\(\hept{\begin{cases}x=2n+1\\y=2m\end{cases}}\) \(\left(m,n\inℤ\right)\)
Ta có :
\(A=\left|2n+1+2m-1000\right|.\left(2n+1-2m-1017\right)\)
\(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1016\right]\)
Lại có :
\(2\left(n+m\right)\) chẵn \(\Rightarrow\)\(\left|2\left(n+m\right)-999\right|\) lẻ ( chẵn trừ lẻ = lẻ ) \(\left(3\right)\)
\(2\left(n-m\right)\) chẵn \(\Rightarrow\)\(2\left(n-m\right)-1016\) chẵn ( chẵn trừ chẵn = chẵn ) \(\left(4\right)\)
Từ (3) và (4) suy ra \(\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1016\right]\) chẵn ( lẻ nhân chẵn = chẵn )
Vậy A là số chẵn
* Nếu x và y lẻ :
\(\Rightarrow\)\(\hept{\begin{cases}x=2n+1\\y=2m+1\end{cases}}\) \(\left(m,n\inℤ\right)\)
Ta có :
\(A=\left|2n+1+2m+1-1000\right|.\left(2n+1-2m-1-1017\right)\)
\(A=\left|2n+2m-998\right|.\left[2\left(n-m\right)-1017\right]\)
\(A=2\left|n+m-499\right|.\left[2\left(n-m\right)-1017\right]⋮2\)
Vậy A là số chẵn
Từ 4 trường hợp trên ta suy ra A là số chẵn với mọi x, y là số nguyên
Vậy A là số chẵn \(\forall x,y\inℤ\)
Chúc bạn học tốt ~
Gọi các giá trị và tần số lần lượt là: \(x_1;x_2;...;x_k\)và \(n_1;n_2;...;n_k\)
Gọi số trung bình cộng là: \(\overline{X}\)
Gọi a là số bất kì
Theo đề bài ta có:
\(\overline{X}=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k}{N}\)
Suy ra: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k}{N}+a\)
Mà \(N=n_1+n_2+...+n_k\)
Do vậy: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2+n_2+...+x_k\cdot n_k+a\left(n_1+n_2+...+n_k\right)}{N}\)
Tức: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k+a\cdot n_1+a\cdot n_2+...+a\cdot n_k}{N}\)
Vậy \(\overline{X}+a=\frac{\left(x_1+a\right)\cdot n_1+\left(x_2+a\right)\cdot n_2+...+\left(x_k+a\right)\cdot n_k}{N}\)(đpcm)
a) m2+1\(\ge\)1 \(\forall\)m, suy ra phương trình đã cho là phương trình bậc nhất một ẩn với mọi m.
b) Nghiệm của phương trình đã cho là x=\(\dfrac{2m}{m^2+1}\) (*).
Áp dụng BĐT Co-si cho hai số dương m2 và 1, ta có:
m2+1\(\ge\)2\(\sqrt{m^2.1}\)=2|m|.
Dấu "=" xảy ra khi và chỉ khi m2=1 \(\Rightarrow\) m=\(\pm\)1.
Với m=1, x=1.
Với m=-1, x=-1.
So sánh hai giá trị của x, ta kết luận: giá trị m cần tìm là m=1.
Ta có thể thấy 11 số bất kì trong các số đó tổng của các số đó là 1 số nguyên âm
=>Vậy ta có :
100:11=9(Dư 1)
=>Ta có 9 tổng đều là số nguyên
=>Vậy 100 số đó là số nguyên âm
Ta có phép chia:
100 : 11 = 9 (dư 1)
Gọi các số đó là a1; a2; a3;...;a100
Giả sử tất cả đều là số nguyên dương thì tổng của 11 số bất kì là 1 số nguyên dương (Trái với điều kiện đề bài)
Do đó có ít nhất 1 số là số nguyên âm
Vì vai trò của các số là như nhau nên giả sử a100 (số bị dư ra ở phép chia bước đầu) là số nguyên âm (1)
Đặt A = a1 + a2 + a3 +...+ a100
A = {(a1 + a2 + a3 +...+ a11) + (a12 + a13 + a14 +...+ a22) +...+ (a89 + a90 + a91 + a92 +...+ a99)} + a100 (Vì dư ra 1 số)
9 cặp số
Vì tổng của 11 số bất kì là số nguyên âm nên tổng của 9 cặp số là số nguyên âm (Vì âm + âm = âm)
Mà a100 là số nguyên âm (Theo (1))
Từ 2 điều trên => A là số nguyên âm (ĐPCM)
Vậy...
Mà a100 là số nguyên âm
A=[(-4x-8)+13]/(x+2)
=-4+13/(x+2) thuộc Z <=> 13/(x+2) thuộc Z <=> 13 chia hết cho (x+2)(do x thuộc Z)
hay (x+2) thuộc Ư(13)={-1;1;13;-13}
tìm x
B=[(x²-1)+6]/(x-1)
=x+1+6/(x-1)
làm tiếp như A
C=[(x²+3x+2)-3]/(x+2)
=[(x+2)(x+1)-3]/(x+2)
=x+1-3/(x+2)
làm tiếp như A
2/cậu cho đề thiếu đọc lại đề xem A có thuộc Z không
3,4 cũng vậy
Bài 1
a, cm : A = 165 + 215 ⋮ 3
A = 165 + 215
A = (24)5 + 215
A = 220 + 215
A = 215.(25 + 1)
A = 215. 33 ⋮ 3 (đpcm)
b,cm : B = 88 + 220 ⋮ 17
B = (23)8 + 220
B = 216 + 220
B = 216.(1 + 24)
B = 216. 17 ⋮ 17 (đpcm)
c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1
C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)
C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)
C = 1 + 42+...+ 22016.42
C = 1 + 42.(20+...+22016)
42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm