K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2023

\(2x=3y=4z\)
\(\Rightarrow\dfrac{2x}{12}=\dfrac{3y}{12}=\dfrac{4z}{12}\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)
Ta có:
\(\dfrac{y}{4}=\dfrac{2y}{8}\)
\(\dfrac{z}{3}=\dfrac{3z}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{6}=\dfrac{2y}{8}=\dfrac{3z}{9}=\dfrac{x+2y-3z}{6+8-9}=\dfrac{-10}{5}=-2\)
\(\Rightarrow x=-2\cdot6=-12\)
     \(y=-2\cdot4=-8\)
     \(z=-2\cdot3=-6\)

5 tháng 10 2018

Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^

Có gì không hiểu bạn ib nha ^^

1. \(2x=3y-2x\left(1\right)\)\(x+y=14\)

\(\left(1\right)\Leftrightarrow4x=3y\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)

Theo tính chất dãy tỉ số bằng nhau, có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)

Bạn tự kết luận ^^

5 tháng 10 2018

sao nhieu bt the ban

x=2y=3z

=>\(\dfrac{x}{6}=\dfrac{2y}{6}=\dfrac{3z}{6}\)

=>\(\dfrac{x}{6}=\dfrac{y}{3}=\dfrac{z}{2}\)

mà 2x+3y+4z=58

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{2x+3y+4z}{2\cdot6+3\cdot3+4\cdot2}=\dfrac{58}{29}=2\)

=>\(x=6\cdot2=12;y=3\cdot2=6;z=2\cdot2=4\)

20 tháng 8 2017

\(2x=-3y=4z\Rightarrow\frac{2x}{12}=\frac{-3y}{12}=\frac{4z}{12}\)(Chia mỗi vế cho 12)

\(\Rightarrow\frac{x}{6}=\frac{-y}{4}=\frac{z}{3}\)\(\Rightarrow\frac{x}{6}=-\frac{2y}{8}=\frac{3z}{9}\)

Áp dung t/c dãy tỉ số bằng nhau:

\(\frac{x}{6}=-\frac{2y}{8}=\frac{3z}{9}=\frac{x+\left(-2y\right)-3z}{6+8-9}=\frac{30}{5}=6\)

\(\Rightarrow\hept{\begin{cases}x=6.6=36\\y=6.8:\left(-2\right)=-24\\z=6.9:3=18\end{cases}}\)

Vậy \(x=36;y=-24;z=18\)

20 tháng 8 2017

từ đây:2x=-3y=4z

=>\(\frac{2x}{12}=-\frac{3y}{12}=\frac{4z}{12}\Leftrightarrow\frac{x}{6}=\frac{y}{-4}=\frac{z}{3}=\frac{x-2y-3z}{6-\left(-8\right)-9}=\frac{30}{5}=6\)

\(\frac{x}{6}=6\Rightarrow x=36;\frac{y}{-4}=6\Rightarrow y=-24;\frac{z}{3}=6\Rightarrow z=18\)

13 tháng 12 2018

Vì 2x = 3y ; 2y = 3z

=> \(\frac{x}{3}=\frac{y}{2};\frac{y}{3}=\frac{z}{2}\)

=> \(\frac{x}{9}=\frac{y}{6};\frac{y}{6}=\frac{z}{4}\)

=> \(\frac{x}{9}=\frac{y}{6}=\frac{z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau .

\(\frac{x}{9}=\frac{y}{6}=\frac{z}{4}=\frac{2x+3y-4z}{2.9+3.6-4.4}=\frac{40}{20}=2\)

Do đó :

\(\frac{x}{9}=2\)=> \(x=2.9=18\)

\(\frac{y}{6}=2\)=> \(y=2.6=12\)

\(\frac{z}{4}=2\)=> \(z=2.4=8\)

Vậy x = 18 ; y = 12 ; z = 8

Hok tốt

18 tháng 3 2016

là 2x+3y+4z nhé =))

20 tháng 9 2019

\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)

\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)

\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)

20 tháng 9 2019

mọi người giúp mk câu b, c, d còn lại nha

24 tháng 7 2019

+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

3 tháng 7 2023

a) \(\left\{{}\begin{matrix}2x+3y=5\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=5\\11y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot\dfrac{9}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{27}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{28}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

Vậy: \(x=\dfrac{14}{11};y=\dfrac{9}{11}\)