chứng minh rằng a,b,c và \(\sqrt{a}\)+\(\sqrt{b}\)+\(\sqrt{c}\)là các số hữu tỉ
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
ND
1
24 tháng 1 2019
Câu hỏi của ka ding - Toán lớp 9 - Học toán với OnlineMath Em xem lbaif ở link này nhé!
LP
0
LD
2
CT
26 tháng 4 2018
Đặt x=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\)
\(\Rightarrow x-\sqrt{a}=\sqrt{b}+\sqrt{c}\)
\(\Rightarrow\left(x^2+a-b-c\right)-2x\sqrt{a}=2\sqrt{bc}\)
\(\Rightarrow\left(x^2+a-b-c\right)^2+4ax^2-4x\left(x^2+a-b-c\right)\sqrt{a}=4bc\)
\(\Rightarrow\sqrt{a}=\dfrac{\left[\left(x^2+a-b-c\right)+4ax^2-4bc\right]}{\left[4x\left(x^2+a-b-c\right)\right]}\)\(\in Q\)
Vậy \(\sqrt{a};\sqrt{b};\sqrt{c}\) là các số hữu tỷ