Từ mặt đất có khối lượng được ném thẳng đứng lên cao với vận tốc 20m/s. Chọn gốc thế năng ở mặt đất. Bỏ qua lực cản không khí biết g =10m/s a) vận tốc của vật khi động năng = 3 lần thế năng b) nếu lực cản bằng 0,5 lần trọng lượng, tìm độ cao cực đại lúc này (giải bằng định lý độ biến thiên động năng giúp mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Độ cao cực đại:
\(mgz_{max}=mgz_1+\dfrac{1}{2}m\upsilon^2\Rightarrow z_{max}=z+\dfrac{\upsilon^2}{2g}=20\left(m\right)\)
a, Bỏ qua sức cản không khí \(\Rightarrow\) Cơ năng bảo toàn
Tại O
\(W_O=\dfrac{mv^2_o}{2}+m.g.h_o=\dfrac{0,2.5^2}{2}+0=2,5\left(J\right)\)
b, Tại \(A\) \(h_A\) max
\(W_O=W_A=m.g.h_A+\dfrac{mv^2_A}{2}\\ \Leftrightarrow2,5=0,2.10.h_A+\dfrac{0,2.0^2}{2}\\ \Leftrightarrow h_A=h_{max}=1,25\left(m\right)\)
c, Tại B
\(Wt_B=2Wđ_B\\ \Rightarrow\left\{{}\begin{matrix}Wt_B-2Wđ_B=0\\Wt_B+Wđ_B=W_B=W_O=2,5\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}Wt_B=\dfrac{5}{3}\left(J\right)\Rightarrow m.g.h_b=\dfrac{5}{3}\Rightarrow h_B=\dfrac{5}{6}\left(m\right)\\Wđ_B=\dfrac{5}{6}\left(J\right)\Rightarrow\dfrac{m.v^2_b}{2}=\dfrac{5}{6}\Rightarrow v_B=\dfrac{5\sqrt{3}}{3}\left(m/s\right)\end{matrix}\right.\)
Chọn gốc thế năng tại mặt đất.
Cơ năng vật lúc này \(\left(z=0m\right)\):
\(W=\dfrac{1}{2}mv^2=\dfrac{1}{2}\cdot m\cdot10^2=50m\left(J\right)\)
Cơ năng vật tại nơi có \(W_t=3W_đ\):
\(W'=W_đ+W_t=4W_đ=4\cdot\dfrac{1}{2}mv'^2=2mv'^2\)
Bảo toàn cơ năng: \(W=W'\)
\(\Rightarrow50m=2mv'^2\)
\(\Rightarrow v'=5\)m/s
a, Cơ năng của viên đá là
W1 = 1/2mv02 + mgz1 = 1/2mv12 = 20
b, Ta có: Cơ năng ban đầu W1 = 20
Cơ năng khi Wt = Wđ
W2 = 1/2mv2 + mgz2 = 2mgz2
theo ĐLBT cơ năng W1 = W2 => 2mgz2 = 20 => z2 = 10 (m)
d ,W1 = 20
Cơ năng khi1/3Wt = Wđ => Wt =3Wđ
W4 = Wt + Wđ = 4Wđ = 2mv2
theo bt cơ năng W1 = W4 => 2mv2 = 20 => v =10
Chọn mặt đất làm gốc thế năng. Gọi A là vị trí vật được ném lên.
Cơ năng của vật tại A là \(w_A=w_{t_A}+w_{đ_A}=mgh_A+\dfrac{1}{2}mv_A^2\) \(=10.10.m+\dfrac{1}{2}.20^2.m\) \(=300m\left(J\right)\)
a) Gọi B là vị trí mà động năng bằng 3 lần thế năng. Ta có \(w_{đ_B}=3w_{t_B}\Rightarrow4w_{t_B}=w_B=300m\) \(\Rightarrow4mgh_B=300m\) \(\Rightarrow h_B=7,5\left(m\right)\)
Vậy tại vị trí vật cao 7,5m so với mặt đất thì động năng bằng 3 lần thế năng. Đồng thời \(w_{đ_B}=3w_{t_B}\Rightarrow w_{t_B}=\dfrac{1}{3}w_{đ_B}\)\(\Rightarrow\dfrac{4}{3}w_{đ_B}=w_B=300m\) \(\Rightarrow\dfrac{4}{3}.\dfrac{1}{2}mv_B^2=300m\) \(\Rightarrow v_B=15\sqrt{2}\approx21,213\left(m/s\right)\)
Vậy vận tốc của vật khi đó xấp xỉ \(21,213m/s\).
b) Gọi C là vị trí vật chạm đất, khi đó \(w_{t_C}=0\) nên \(w_{đ_C}=w_C=300m\) \(\Rightarrow\dfrac{1}{2}mv_C^2=300m\) \(\Rightarrow v_C=10\sqrt{6}\approx24,495\left(m/s\right)\)
Vậy vận tốc của vật khi chạm đất xấp xỉ \(24,495m/s\).
Chọn mốc thế năng ở mặt đất :
Cơ năng sau khi ném vật : \(W=\dfrac{1}{2}mv^2+mgh=\dfrac{1}{2}m.\left(20\right)^2+m.10.10=300m\) (J)
lại có \(W_đ=3W_t\Leftrightarrow\left\{{}\begin{matrix}W=4W_t\left(1\right)\\W=\dfrac{4}{3}W_đ\left(2\right)\end{matrix}\right.\)
Theo (1) ta có 300m = 4mgh1
<=> h1 = \(\dfrac{300m}{4mg}=75\left(m\right)\)
Theo (2) ta có : \(300m=\dfrac{4}{3}.\dfrac{1}{2}mv_1^2\)
\(\Leftrightarrow v_1=\sqrt{\dfrac{300m}{\dfrac{4}{3}.\dfrac{1}{2}m}}=15\sqrt{2}\left(m/s\right)\)
Vật chạm đất thì \(W=W_đ\)
\(\Rightarrow300m=\dfrac{1}{2}m.v_{max}^2\)
\(\Rightarrow v_{max}=10\sqrt{6}\) (m/s)
Cơ năng của vật là:
\(W=W_t+W_đ\)
\(\Leftrightarrow W=mgh+\dfrac{1}{2}mv^2\)
\(\Leftrightarrow W=2.10.4+\dfrac{1}{2}.2.10^2\)
\(\Leftrightarrow W=180J\)
Theo định luật bảo toàn cơ năng:
\(W=W_đ=W_t\)
\(\Leftrightarrow W=3W_t+W_t=4W_t\)
\(\Leftrightarrow180=4mgh\)
\(\Leftrightarrow180=4.2.10h\)
\(\Leftrightarrow180=80h\)
\(\Leftrightarrow h=\dfrac{180}{80}=2,25\left(m\right)\)
a) Ta có luật bảo toàn năng lượng cơ học:
Động năng ban đầu + Thế năng ban đầu = Động năng cuối + Thế năng cuối
Ta có thể tính khả năng ban đầu và chức năng ban đầu của vật:
Thế năng ban đầu = mgh = 0 (vì chọn gốc thế năng ở mặt đất) Động năng ban đầu = (1/2)mv^2 = (1/2)m(20)^2 = 200m
Theo yêu cầu của đề bài, ta cần tìm vận tốc của vật khi hoạt động = 3 lần thế năng. Tốc độ tìm kiếm call is v.
Ta có:
(1/2)mv^2 = 3mgh
Với h = 0 (do chọn gốc thế năng ở mặt đất), ta có:
(1/2)mv^2 = 0 ⇒ v = 0
Do đó vận tốc của vật thể đang hoạt động bằng 3 lần thế năng là 0.
b) Ta sẽ giải quyết bài toán bằng cách định mức các biến thiên động. Theo lý do này, tổng hợp các lực lượng bên ngoài bằng các biến thiên của năng lượng cơ học.
Gọi h là tốc độ cao cần tìm, v là vận tốc của vật khi ở tốc độ cao đó.
Lực mạnh Fg = mg hướng xuống dưới, lực cản Fc = 0,5mg hướng ngược lại với chiều đi lên.
Tổng cộng các lực lượng bên ngoài trong quá trình vật liệu đi từ mặt đất lên độ cao bằng:
W = ∆K = K cuối - Kđầu = (1/2)mv^2 - 0 = (1/2)mv^2
Tổng cộng các lực lượng bên ngoài trong quá trình vật liệu đi từ độ cao h xuống mặt đất bằng:
W' = ∆U = Uđầu - U cuối = mgh - 0 = mgh
Do vật thể đi từ mặt đất lên độ cao h rồi rơi xuống mặt đất, nên tổng công lực bên ngoài trong quá trình vật thể đi từ mặt đất đến mặt đất bằng 0.
Theo định lý về biến thiên chức năng, ta có:
W + W' = 0 ⇒ (1/2)mv^2 + mgh = 0 ⇒ h = - v^2/2g = -200/20 = -10 (không có ý nghĩa vật lý)
Vì vậy, không có độ cực đại cao khi lực cản bằng 0,5 lần trọng lượng.