K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{1}{2022}\cdot A=\dfrac{2022^{100}+1}{2022^{100}+100}=1-\dfrac{99}{2022^{100}+100}\)

\(\dfrac{1}{2022}B=\dfrac{2022^{101}+1}{2022^{101}+100}=1-\dfrac{9}{2022^{101}+100}\)

2022^100+100<2022^101+100

=>-99/2022^100+100<-99/2022^101+100

=>A<B

13 tháng 3 2023

=> A/2022 = 2022^100+1/2022^100+2022 = 1- 2021/2022^100+2022

=> B/2022 = 2022^101+1/2022^101+2022 = 1- 2021/2022^101+2022

Nhận thấy 2022^101 + 2022 > 2022^100 + 2022

=> 2021/2022^101 + 2022 < 2021/2022^100 + 2022

=> B/2022 > A/2022 => B>A

Vậy A<B

21 tháng 1

Ta có tính chất: \(\dfrac{a}{b}>\dfrac{a-m}{b-m}\)

\(A=\dfrac{2022^{99}-1}{2022^{100}-1}>\dfrac{2022^{99}-1-2021}{2022^{100}-1-2021}\)

\(A>\dfrac{2022^{99}-2022}{2022^{100}-2022}\)

\(A>\dfrac{2022\left(2022^{98}-1\right)}{2022\left(2022^{99}-1\right)}\)

\(A>\dfrac{2022^{98}-1}{2022^{99}-1}\)

\(A>B\)

11 tháng 5 2022

Ta có \(x+1=2022\)

\(P\left(x\right)=x^{101}-\left(x+1\right)x^{100}+...+\left(x+1\right)x-1\)

\(=x^{101}-x^{101}-x^{100}+...+x^2+x-1=x-1\)

-> P(x) = 2020 

9 tháng 5 2022

\(2022A=2022+2022^2+2022^3+2022^4+...+2022^{2018}\)

\(2021A=2022A-A=2022^{2018}-1\Rightarrow A=\dfrac{2022^{2018}-1}{2021}\)

\(\Rightarrow A< B\)

c: \(100C=\dfrac{100^{100}+100}{100^{100}+1}=1+\dfrac{99}{100^{100}+1}\)

\(100D=\dfrac{100^{101}+100}{100^{101}+1}=1+\dfrac{99}{100^{101}+1}\)

100^100+1<100^101+1

=>\(\dfrac{99}{100^{100}+1}>\dfrac{99}{100^{101}+1}\)

=>100C>100D

=>C>D

b: \(2020E=\dfrac{2020^{2022}+2020}{2020^{2022}+1}=1+\dfrac{2019}{2020^{2022}+1}\)

\(2020F=\dfrac{2020^{2021}+2020}{2020^{2021}+1}=1+\dfrac{2019}{2020^{2021}+1}\)

2020^2022+1>2020^2021+1(Do 2022>2021)

=>\(\dfrac{2019}{2020^{2022}+1}< \dfrac{2019}{2020^{2021}+1}\)

=>2020E<2020F

=>E<F

15 tháng 8 2023

hơi vô lí

 

4 tháng 7 2023

Trước hết ta phải chứng minh \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).

Thật vậy, \(\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{a+ab}{b^2+b}\) và \(\dfrac{a+1}{b+1}=\dfrac{\left(a+1\right)b}{\left(b+1\right)b}=\dfrac{ab+b}{b^2+b}\).

Mà theo giả thuyết là a < b nên \(\dfrac{a+ab}{b^2+b}< \dfrac{ab+b}{b^2+b}\), suy ra \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).

Từ đây ta có:

\(B=\dfrac{2022^{2022}+1}{2022^{2023}+1}=\dfrac{2022^{2023}+2022}{2022^{2024}+2022}=\dfrac{2022^{2023}+2021+1}{2022^{2024}+2021+1}\)

Đặt \(A_1=\dfrac{2022^{2023}+2}{2022^{2024}+2}=\dfrac{2022^{2023}+1+1}{2022^{2024}+1+1}\), rõ ràng \(A_1>A\).

Đặt \(A_2=\dfrac{2022^{2023}+3}{2022^{2024}+3}=\dfrac{2022^{2023}+2+1}{2022^{2024}+2+1}\), rõ ràng \(A_2>A_1\).

...

Đặt \(A_{2020}=\dfrac{2022^{2023}+2021}{2022^{2024}+2021}=\dfrac{2022^{2023}+2020+1}{2022^{2024}+2020+1}\), rõ ràng \(A_{2020}>A_{2019}\) và \(B>A_{2020}\).

Suy ra \(B>A_{2020}>A_{2019}>...>A_2>A_1>A\). Vậy A < B.

4 tháng 7 2023

Ta có A = \(\dfrac{2022^{2023}}{2022^{2024}}=\dfrac{1}{2022}\) ; B = \(\dfrac{2022^{2022}}{2022^{2023}}=\dfrac{1}{2022}\)

Mà \(\dfrac{1}{2022}=\dfrac{1}{2022}\)

Vậy A = B

14 tháng 3 2023

A>B

14 tháng 3 2023

bạn có thể giải chi tiết được không ạ?

 

a: \(98^{10}\cdot A=\dfrac{98^{98}+98^{10}}{98^{98}+1}=1+\dfrac{98^{10}-1}{98^{98}+1}\)

\(98^{10}\cdot B=\dfrac{98^{99}+98^{10}}{98^{99}+1}=1+\dfrac{98^{10}-1}{98^{99}+1}\)

98^88+1>98^99+1

=>A<B

b: \(\dfrac{1}{2022^2}\cdot C=\dfrac{2022^{2023}+1}{2022^{2023}+2022^2}=1+\dfrac{1-2022^2}{2022^{2023}+2022^2}\)

\(\dfrac{1}{2022^2}\cdot D=\dfrac{2022^{2021}+1}{2022^{2021}+2022^2}=1+\dfrac{1-2022^2}{2022^{2021}+2022^2}\)

2022^2023>2022^2021

=>2022^2023+2022^2>2022^2021+2022^2

=>\(\dfrac{2022^2-1}{2022^{2023}+2022^2}< \dfrac{2022^2-1}{2022^{2021}+2022^2}\)

=>\(\dfrac{1-2022^2}{2022^{2023}+2022^2}>\dfrac{1-2022^2}{2022^{2021}+2022^2}\)

=>C>D

2 tháng 5 2022

sửa rồi đó ạ