K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

\(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-...-\dfrac{1}{120}=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-\dfrac{2}{20}-\dfrac{2}{30}-\dfrac{2}{42}-...-\dfrac{2}{240}=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-\left(\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\right)=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-2.\dfrac{3}{16}=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-\dfrac{3}{8}=\dfrac{5}{8}\)

\(\dfrac{x}{2008}=\dfrac{5}{8}+\dfrac{3}{8}\)

\(\dfrac{x}{2008}=1=\dfrac{2008}{2008}\)

\(\Rightarrow x=2008\)

17 tháng 3 2017

b,\(\dfrac{1}{3.5}+\dfrac{1}{5.7}\)\(+\dfrac{1}{7.9}+....+\dfrac{1}{\left(2x+1\right).\left(2x+3\right)}=\dfrac{15}{93}\)

\(\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2x+1}-\dfrac{1}{2x+3}\right).\dfrac{1}{2}=\dfrac{15}{93}\)

\(\left[\dfrac{1}{3}+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)+....+\left(\dfrac{1}{2x+1}-\dfrac{1}{2x+1}\right)-\dfrac{1}{2x+3}\right].\dfrac{1}{2}=\dfrac{15}{93}\)

\(\left(\dfrac{1}{3}+0+0+...+0-\dfrac{1}{2x+3}\right).\dfrac{1}{2}=\dfrac{15}{93}\)

\(\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{15}{93}:\dfrac{1}{2}\)

\(\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{10}{31}\)

\(\dfrac{1}{2x+3}=\dfrac{1}{3}-\dfrac{10}{31}\)

\(\dfrac{1}{2x+3}=\dfrac{1}{93}\)

\(\Rightarrow2x+3=93\)

\(2x=93-3=90\)

\(\Rightarrow x=90:2=45\)

19 tháng 3 2017

Cảm ơn bạn

27 tháng 7 2021

\(M=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{105}+\dfrac{1}{120}\)

\(M=2.\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{240}\right)\)

\(M=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{15.16}\right)\)

\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)

\(M=2.\dfrac{3}{16}\)

\(M=\dfrac{3}{8}\)

Vậy \(\dfrac{1}{3}< M< \dfrac{1}{2}\)

5 tháng 8 2023

\(\dfrac{15}{14}\)\(\dfrac{10}{21}\) \(\times\) \(\dfrac{1}{5}\) = \(\dfrac{15}{14}\) \(\times\) \(\dfrac{21}{10}\) \(\times\) \(\dfrac{1}{5}\) = \(\dfrac{5\times3\times7\times3}{7\times2\times10\times5}\) = \(\dfrac{9}{20}\)

\(\times\) \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) = 1 + \(\dfrac{1}{5}\) = \(\dfrac{6}{5}\)

7 : \(\dfrac{1}{5}\) - \(\dfrac{1}{5}\) = 35 - \(\dfrac{1}{5}\) = \(\dfrac{174}{5}\)

6 + \(\dfrac{1}{5}\): 2 = 6 + \(\dfrac{1}{10}\) = \(\dfrac{61}{10}\) 

8 - \(\dfrac{1}{5}\) \(\times\) 7 = 8 - \(\dfrac{7}{5}\) = \(\dfrac{33}{5}\)

\(\dfrac{15}{14}\) : \(\dfrac{10}{21}\) x \(\dfrac{1}{5}\)   =   \(\dfrac{15}{14}\) x \(\dfrac{21}{10}\) x \(\dfrac{1}{5}\)  =   \(\dfrac{9}{4}\) x \(\dfrac{1}{5}\)  =  \(\dfrac{9}{20}\)

5 x \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\)  =  \(\dfrac{5}{1}\) x \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\)  =  1 x \(\dfrac{1}{5}\)  =  \(\dfrac{1}{5}\)

7 : \(\dfrac{1}{5}-\dfrac{1}{5}\)  =  \(\dfrac{7}{1}\) x \(\dfrac{5}{1}-\dfrac{1}{5}\)   =  \(\dfrac{35}{1}\) - \(\dfrac{1}{5}\)   =  \(\dfrac{175}{5}\) - \(\dfrac{1}{5}\)  =  \(\dfrac{174}{5}\)

6 + \(\dfrac{1}{5}\) : 2   =  \(\dfrac{6}{1}\) + \(\dfrac{1}{5}\) x \(\dfrac{1}{2}\)  =  \(\dfrac{6}{1}+\dfrac{1}{10}\)  =  \(\dfrac{60}{10}\) + \(\dfrac{1}{10}\)  = \(\dfrac{61}{10}\)

8 - \(\dfrac{1}{5}\) x 7  =  \(\dfrac{8}{1}\) - \(\dfrac{1}{5}\) x \(\dfrac{7}{1}\)  =  \(\dfrac{8}{1}-\dfrac{7}{5}\)  =  \(\dfrac{40}{5}\) - \(\dfrac{7}{5}\) = \(\dfrac{33}{5}\)

Sai Báo Lại Mình Nha!

9 tháng 10 2017

a) \(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-...-\dfrac{1}{120}=\dfrac{5}{8}\)

\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\right)=\dfrac{5}{8}\)

\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\right)=\dfrac{5}{8}\)

\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\right)=\dfrac{5}{8}\)

\(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)=\dfrac{5}{8}\)

\(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)=\dfrac{5}{8}\) \(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}-2.\dfrac{3}{16}=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}-\dfrac{3}{8}=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}=\dfrac{5}{8}+\dfrac{3}{8}\\ \Rightarrow\dfrac{x}{2008}=1\\ \Rightarrow x=2008\)

b) \(\dfrac{7}{x}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+\dfrac{4}{13.17}+...+\dfrac{4}{41.45}=\dfrac{29}{45}\)

\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{4}{5.9}+\dfrac{4}{9.13}+\dfrac{4}{13.17}+...+\dfrac{4}{41.45}\right)=\dfrac{29}{45}\)

\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\right)=\dfrac{29}{45}\)

\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{1}{5}-\dfrac{1}{45}\right)=\dfrac{29}{45}\\ \Rightarrow\dfrac{7}{x}+\dfrac{8}{45}=\dfrac{29}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{29}{45}-\dfrac{8}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{21}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{7}{15}\\ \Rightarrow x=15\)

c) \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{15}{93}\)

\(\Rightarrow2\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}\right)=\dfrac{15}{93}.2\)

\(\Rightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{30}{93}\\ \Rightarrow\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2x+1}-\dfrac{1}{2x+3}=\dfrac{10}{31}\)

\(\Rightarrow\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{10}{31}\\ \Rightarrow\dfrac{2x}{3\left(2x+3\right)}=\dfrac{10}{31}\\ \Rightarrow\dfrac{10.3\left(2x+3\right)}{31}=2x\\ \Rightarrow\dfrac{30\left(2x+3\right)}{31}=2x\\ \Rightarrow x=\dfrac{30\left(2x+3\right)}{31}:2\\ \Rightarrow x=\dfrac{30\left(2x+3\right)}{62}\\ \Rightarrow x=\dfrac{15\left(2x+3\right)}{31}\\\Rightarrow\dfrac{15\left(2x+3\right)}{x}=31\\ \Rightarrow\dfrac{30x+45}{x}=31\\ \Rightarrow30+\dfrac{45}{x}=31\\ \Rightarrow \dfrac{45}{x}=1\\ \Rightarrow x=45\)

9 tháng 10 2017

a/ \(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-............-\dfrac{1}{120}=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-\left(\dfrac{1}{10}+\dfrac{1}{15}+.......+\dfrac{1}{120}\right)=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-\left(\dfrac{2}{20}+\dfrac{2}{30}+.......+\dfrac{2}{240}\right)=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+.......+\dfrac{1}{15.16}\right)=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{15}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-\dfrac{3}{16}=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}=\dfrac{13}{16}\)

\(\Leftrightarrow x=1631,5\)

Vậy ..................

29 tháng 3 2024

a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)

=\(\dfrac{10}{11}.\dfrac{-8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)

=\(\dfrac{10}{11}(\dfrac{-8}{9}+\dfrac{7}{18})\)

=\(\dfrac{10}{11}.\dfrac{-1}{2}\)

=\(\dfrac{-5}{11}\)

7 tháng 8 2024

b; 

B = \(\dfrac{3}{14}\) : \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\)\(\dfrac{1}{28}\) + \(\dfrac{29}{42}\) : \(\dfrac{1}{28}\) - 8

B = (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) - 8

B = (\(\dfrac{9}{42}\) - \(\dfrac{26}{42}\) + \(\dfrac{29}{42}\)) - 8

B = (\(\dfrac{-17}{42}\) + \(\dfrac{29}{42}\)) - 8

B = \(\dfrac{2}{7}\) - 8

B = \(\dfrac{2}{7}-\dfrac{56}{7}\)

B = - \(\dfrac{54}{7}\)

15 tháng 4 2017

\(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)

\(=\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\)

\(=2\times\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...\dfrac{1}{240}\right)\)

\(=2\times\left(\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+...+\dfrac{1}{15\times16}\right)\)

\(=2\times\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(=2\times\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)

\(=\dfrac{3}{8}\)

15 tháng 4 2017

=2/20+2/30+2/42+.....+2/240

=2/4.5+2/5.6+2/6.7+.....+2/15.16

=1/2[1/4.5+1/5.6+1/6.7+.....+1/15.16]

=1.2[1/4-1/5+1/5-1/6+.....+1/15-1/16]

=1/2[1/4-1/16]

=1/2.3/16

=3/32

11 tháng 5 2023

Ko cần biet vi ko biet ang ang

 

11 tháng 5 2023

\(\dfrac{1}{2022}\) \(\times\) \(\dfrac{2}{5}\) + \(\dfrac{1}{2022}\) \(\times\) \(\dfrac{7}{5}\) - \(\dfrac{1}{2022}\) \(\times\) \(\dfrac{8}{10}\)

\(\dfrac{1}{2022}\) \(\times\) ( \(\dfrac{2}{5}\) + \(\dfrac{7}{5}\) - \(\dfrac{8}{10}\))

\(\dfrac{1}{2022}\) \(\times\) ( \(\dfrac{9}{5}\) - \(\dfrac{4}{5}\))

\(\dfrac{1}{2022}\) \(\times\) \(\dfrac{5}{5}\)

=  \(\dfrac{1}{2022}\times1\)

\(\dfrac{1}{2022}\)