Cho hệ pt: 2x+y=1 và mx+2y=3. Tìm m thuộc Z sao cho biểu thức P=3x+y nhận giá trị là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có D = m − 1 2 m = m 2 + 2 > 0 , ∀ m ∈ R nên hệ phương trình luôn có nghiệm duy nhất
D x = 3 − 1 9 m = 3 m + 9 ; D y = m 3 2 9 = 9 m − 6
Vậy hệ luôn có nghiệm duy nhất là: x = 3 m + 9 m 2 + 2 y = 9 m − 6 m 2 + 2
Ta có: A = 3 x − y = 3 3 m + 9 m 2 + 2 − 9 m − 6 m 2 + 2 = 33 m 2 + 2
Vì m ∈ Z nên để A nguyên thì m 2 + 2 là ước của 33 mà m 2 + 2 ≥ 2 nên ta có các trường hợp sau:
Mà m nguyên dương nên m ∈ 1 ; 3
Vậy có 2 giá trị nguyên dương của m để A nguyên.
Đáp án cần chọn là: B
Thao m =3 và HPT ta có:
\(\left\{{}\begin{matrix}\left(3-1\right)x+y=3\\x+\left(3-1\right)y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=6\\x+2y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=6\\3x=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy với m=3 thì HPT có nghiệm (x;y) = (\(\dfrac{4}{3};\dfrac{1}{3}\))
a) Thay m=3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=3\\2x+4y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-1\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\2x=3-y=3-\dfrac{1}{3}=\dfrac{8}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
a) \(\hept{\begin{cases}3x+2y=4\\2x-y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}3x+2y=4\\4x-2y=2m\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{2m+4}{7}\\y=2x-m\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{2m+4}{7}\\y=\frac{8-3m}{7}\end{cases}}\)
Để phương trình có nghiệm \(\left(x,y\right)\)với \(x< 1,y< 1\)thì
\(\hept{\begin{cases}\frac{2m+4}{7}< 1\\\frac{8-3m}{7}< 1\end{cases}}\Leftrightarrow\hept{\begin{cases}2m< 3\\3m>1\end{cases}}\Leftrightarrow\frac{1}{3}< m< \frac{2}{3}\).
b) Để ba đường thẳng đã cho đồng quy thì:
\(\frac{2m+4}{7}+2.\frac{8-3m}{7}=3\Leftrightarrow m=-\frac{1}{4}\).
Phương trình f(x;y) = 0 ⇔ (2x – 3y + 7)(3x + 2y – 1) = 0 nhận x = -3 làm nghiệm nên ta có:
[2(-3) – 3y + 7][3(-3) + 2y – 1] = 0
⇔ (- 6 – 3y + 7)(- 9 + 2y – 1) = 0
⇔ (1 – 3y)(2y – 10) = 0 ⇔ 1 – 3y = 0 hoặc 2y – 10 = 0
1 – 3y = 0 ⇔ y = 1/3
2y – 10 = 0 ⇔ y = 5
Vậy phương trình (2x – 3y + 7)(3x + 2y – 1) = 0 nhận x = -3 làm nghiệm thì y = 1/3 hoặc y = 5.
=>y=1-2x và mx+2(1-2x)=3
=>y=1-2x và mx+2-4x=3
=>y=1-2x và x(m-4)=1
=>x=1/m-4 và y=1-2/m-4=m-4-2/m-4=m-6/m-4
P=3x+y
=3/m-4+m-6/m-4
=m-3/m-4
Để P nguyên thì m-4+1 chia hết cho m-4
=>\(m-4\in\left\{1;-1\right\}\)
=>\(m\in\left\{5;3\right\}\)